
  

  

Abstract— A novel low-complexity method of detecting 

epileptic seizures from intracranial encephalography (iEEG) 

signals is presented. In the proposed algorithm, coastline, energy 

and nonlinear energy features of iEEG signals are extracted in a 

patient-specific two-stage seizure detection system. The 

detection stage of the proposed system, which extracts two times 

more features than the monitoring stage, is only powered on 

when the monitoring stage detects a seizure occurrence. A new 

metric is defined to demonstrate the significance of the two-stage 

architecture and show the time duration over which the 

detection stage is activated. The new parameter is called 

detection stage activation ratio (DAR) and it is equal to 0.272 in 

this work. In addition, the proposed seizure detector 

outperforms other algorithms which utilize a single feature or 

multiple features continuously in terms of sensitivity, specificity 

and DAR.  Therefore, it is highly suitable for seizure detector 

implants in which reducing the power consumption is a critical 

factor to increase the lifetime of the implanted battery. The 

algorithm is implemented on a Cyclone V FPGA and has a low 

dynamic power of 1 𝛍W when tested on human iEEG signals of 

six patients from the Bern Inselspital dataset. It reaches a perfect 

sensitivity of 100% tested on 120 hours of iEEG data containing 

24 seizure periods of six patients. 

 

I. INTRODUCTION 

Epilepsy is a chronic neurological disorder which affects 
more than 65 million people globally and approximately 1 out 
of 26 people will develop epilepsy at some point during their 
lifetime [1]. Epilepsy is characterized by recurrent temporary 
electrical disturbances in the brain known as seizures [2]. 
Approximately 30% of patients remain medicament refractory 
in spite of available therapies [3]. Using implantable and 
wearable seizure control devices are considered as a promising 
and effective alternative. The imperative part of an 
implantable or wearable device for epilepsy control is an 
efficient onset seizure detection system from EEG signals. 

On one hand, a powerful seizure detection algorithm is 
required to discriminate between seizure and normal episodes 
of EEG signals which are called ictal and inter-ictal signals 
respectively. On the other hand, a sophisticated algorithm is 
rather power hungry, which must be avoided in an implantable 
module due the expensive and risk-prone battery replacement 
issue. Furthermore, it is mandatory to maintain the power 
consumption of the implant within a minimum range to 
prevent an undesirable temperature elevation of the neural 
tissues which can cause detrimental tissue damages [3]. 
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II. BACKGROUND 

An extensive body of research has been devoted to design 
automated seizure detection algorithms while most of the 
algorithms lack a hardware-friendly implementation and 
cannot be utilized in implantable and wearable devices 
especially in regards of power consumption. EEG analyses can 
be categorized into time domain, frequency domain, time-
frequency domain and nonlinear methods [4-7]. 

Authors in [4,8] have used frequency domain features such 
as power spectral density to detect seizures. A random forest 
classifier is also used in [8] as a classifier. A major drawback 
of using spectral power density is having high false positive 
detections due to increasing power spectral density even in 
inter-ictal states. 

Statistical features in time-domain are extracted in [9]. 
Although multiple features are extracted in [9], it lacks a 
feature ranking and selection strategy. [6] used discrete-
wavelet transform to extract time domain features which is 
considered as a computationally expensive method. 

Furthermore, a neural network in conjunction with deep 
learning is applied on spectral power features of EEG signals 
in [10]. The high complexity of this approach prevents the on-
chip application. 

In this article, a power-efficient two-stage seizure detection 
algorithm is presented and implemented on Cyclone V FPGA. 
A hardware-friendly strategy is employed using coastline, 
energy and nonlinear energy features which are known as 
powerful time-domain features in onset seizure detection.  
Feature ranking and selection strategies are applied to 
determine the optimal feature for each stage. The proposed 
architecture enables avoiding redundant computations by 
turning off two feature extractors when the monitoring stage 
doesn’t detect any seizure. In addition, a voting-based post-
processing block is utilized to provide a further enhancement 
to the specificity of the system. Finally, we compare our novel 
approach with two conventional methods in which the 
coastline, energy and nonlinear energy features are extracted 
without using two-stage approach. 

The remainder of this paper is organized as follows. 
Section III describes the system overview of the proposed 
method. Section IV introduces the dataset and parameters 
which are used to assess the performance of the system as well 
as hardware implementation results. Finally, the main 
conclusions of this work are summarized in Section V. 

 

Two-stage Hardware-Friendly Epileptic Seizure Detection Method 

with a Dynamic Feature Selection* 

Keyvan Farhang Razi and Alexandre Schmid, Senior Member, IEEE 

2021 43rd Annual International Conference of the
IEEE Engineering in Medicine & Biology Society (EMBC)
Oct 31 - Nov 4, 2021. Virtual Conference

978-1-7281-1178-0/21/$31.00 ©2021 IEEE 156



  

 

 

Figure 1.  Block diagram of the proposed system 

 

III. NOVEL TWO-STAGE ARCHITECTURE 

The highest priority of a two-stage seizure detection 
system   relates to minimizing the power consumption while 
keeping the efficacy not affected.  In this work, a patient-
specific multi-criteria algorithm is proposed to guarantee the 
efficient operation of the two-stage seizure detector. Three 
time-domain features used in this work are the coastline, 
energy and nonlinear energy features. These features have 
been widely used in the literature of epileptic seizure detection 
[3,7,9]. An 8-bit feature extractor engine calculates these three 
features in a two-stage architecture. 

The coastline feature measures the difference between 
adjacent samples at any rising edge of the clock using an 8-bit 
subtractor and accumulate them over a fixed window of one-
second which contains N=512 samples. The accumulated 
value is compared with the coastline threshold and generates 
an early detection decision. The early detection decision is 
used in a post-processing block for further analyses. The 
mathematical expression of the coastline feature is given in (1) 
[7]. 

CL =  
1

𝑁
 ∑ 𝑎𝑏𝑠(𝑥[𝑖] − 𝑥[𝑖 − 1])𝑁

𝑖=1      (1) 

The mathematical expression associated with the energy 
feature extraction over a window of length N is given as (2) 
[7]. The square value of each sample is generated by an 8-bit 
multiplier which is followed by an accumulator in the 
hardware design. 

E = 
1

𝑁
 ∑ 𝑥[𝑖]2𝑁

𝑖=1           (2) 

The nonlinear energy nonuniformly weights the 
components at different frequencies using square-law 
weighting. The mathematical expression is given as (3) [7]. 

NE =  
1

𝑁
 ∑ 𝑥[𝑖]2𝑁

𝑖=1 − 𝑥[𝑖 − 1]𝑥[𝑖 + 1]     (3) 

A. Two-stage patient-specific seizure detection 

The block diagram of the proposed two-stage seizure 
detection system is depicted in Fig. 1. Although three time-
domain features (F1, F2, F3) are extracted in this work, only a 
single feature (F1) is continuously extracted in the first stage 
that is called the monitoring stage. Two other features (F2, F3) 
are extracted in the second stage which is called the detection 
stage, only when it is enabled by the controller. The controller 

will activate the detection stage for a limited period of time 
upon arising a seizure detection flag from the monitoring 
stage. The logical block and multiplexer are in charge of 
making the final seizure detection decision in the system. 

This architecture presents a practical solution for 
implantable systems in which lowering the power 
consumption is of paramount importance. During long inter-
ictal states, only one feature is extracted in the monitoring 
stage and the detection stage is inactivated to avoid 
unnecessary computations. Different components of the 
system are described in the following. 

1) Monitoring stage 
The monitoring stage operates continuously during both 

inter-ictal and ictal states. To avoid redundant computations, 
only one feature is extracted in this stage and it is determined 
by a feature ranking approach in the training phase.  The most 
important property of the feature in this stage is having a high 
sensitivity to minimize activation of the detection stage. The 
detection flag of this stage arises based on threshold crossing 
and it followed by a voting-based post-processing block. 

2) Detection stage 
The detection stage is the second stage in the presented 

system. It is of higher energy consumption compared to the 
monitoring stage due to extracting two features. The 
appropriate features for this stage are determined by a patient-
specific feature ranking in the training phase. 

This stage is temporarily powered on by the controller if a 
detection flag arises from the monitoring stage. The main role 
of this stage is reducing false positive detections of the system. 

3) Post-processing 
The hardware implementation of the post-processing block 

is shown in Fig. 2. It is utilized to improve the system 
specificity. To this aim, a voting-based strategy with three-
second window length is employed. The output signal (post 
detection) will be ‘1’ when two threshold crossing occur in 
each three-consecutive windows.  

4) Controller and logical block 

The controller and logical blocks are displayed in Fig. 1. F1, 

F2 and F3 are the outputs of feature extraction in the 

monitoring and detection stages, respectively. The controller 

block is in charge of activating the detection stage for a 

limited period of 𝑡𝑎𝑐𝑡 when F1 is high. The value of 𝑡𝑎𝑐𝑡 must 

be set with respect to the post-processing window length. 
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Thus,  𝑡𝑎𝑐𝑡 in this work is selected 9 seconds as a compromise 

between the detection stage activation ratio (DAR), 

sensitivity and specificity parameters. Besides, the select 

signal of the multiplexer (s) which selects between the output 

of the logical block and F1, is determined by the controller 

output. 
On one hand, applying a logical AND to F1, F2 and F3 

contributes to reducing the number of false positive detections 
at the cost of lowering the number of true positive detections. 
On the other hand, applying a logical OR to them results in 
increasing false positives. Hence a combination of a logical 
AND in conjunction with a logical OR is chosen to provide a 
balanced trade-off between false detections. The logical 
operation of the logical block is expressed as (4). 

𝐿𝑜𝑔𝑖𝑐𝑎𝑙 𝑜𝑢𝑡𝑝𝑢𝑡 =  𝐹1 𝐴𝑁𝐷 (𝐹2 𝑂𝑅 𝐹3)    (4) 

A. Training phase and feature ranking 

The training data is randomly selected for each patient and 
it doesn’t include more than 50% of seizure events. In the 
training phase, the thresholds of the features are determined so 
as to obtain the highest seizure detection performance. It is 
worth noting that there is a compromise between sensitivity 
and specificity of the detection when it comes to threshold 
selecting. Initially, the thresholds of all three features are 
chosen using the marked dataset to obtain the highest 
sensitivity. Then, the features are ranked with respect to their 
sensitivity. The feature with the highest rank is selected for the 
monitoring stage. 

The role of the detection stage is improving the specificity 
of the system. As a result, the thresholds of the features used 
in this stage are adjusted in order to obtaining the highest 
possible specificity. 

The proposed two-stage architecture successfully 
addresses the trade-off between sensitivity and specificity of 
the system which are reversely proportional to false negative 
and false positive detections. In conventional threshold-based 
seizure detectors, reducing the number of false positive 
detections increases the number of false negative detections. 
However, this approach minimizes false negative detections of 
the monitoring stage and false positive detections of the 
detection stage. Consequently, it enables the design to keep an 
optimized performance. 

IV. DATASET AND FPGA IMPLEMENTATION RESULTS 

This section describes the dataset, performance parameter 

metrics and FPGA implementation results. The parameters 

associated with the implementation of the seizure detector on 

a Cyclone V FPGA is summarized in Table I. 

A. Dataset and performance metrics 

The functionality of the proposed seizure detection system 
has been assessed by iEEG datasets of six patients from the 
epilepsy program of the Bern Inselspital [5]. The seizure 
detector has been tested on 120 hours data which includes 24 
seizures. 

To evaluate the performance of the algorithm, four 
parameters including the sensitivity, specificity, detection 
delay and detection stage activation ratio (DAR) are 
considered. DAR is a new metric defined in this work to 
demonstrate the performance of a two-stage seizure detector. 
DAR is defined as the time duration over which the detection 
stage is activated when the hardware is tested on a dataset 
which contains a seizure event per hour. 

It is noteworthy that the DAR is reversely proportional to 
the energy consumption of the system and varies between 0 
to 1. DAR=0 means that only one feature of the monitoring 
stage is extracted for seizure detection, while DAR=1 implies 
that the system needs to extract all three features continuously 
when there is a seizure event per hour. 

B. Hardware implementation results 

Fig. 3 demonstrates an iEEG signal with a seizure event 
along with seizure detection results using the coastline 
feature, three features (coastline, energy and nonlinear 
energy) in a single stage and the proposed algorithm. The 
iEEG signal of the patient ID1 of the dataset is shown in Fig 
3(a). A seizure occurrence begins at t =100 sec and lasts until 
t = 130 sec. Fig. 3(b), 3(c) and 3(d) demonstrate the 
superiority of the proposed system over two other methods as 
it has the lowest fluctuations between zero and one before and 
during the seizure event. 

The features used in the monitoring and detection stages 
are chosen based on the feature selection approach. 
Information regarding the dataset and the rank of features for 
six patients are provided in Table II. It also evidences the 
significance of employing the feature ranking in the two-stage 
architecture system since the rank of features varies from 
patient to patient. Thus, the features which are extracted in the 
monitoring and detection stages are adopted based on their 
ranks when the feature with highest rank has the highest 
seizure detection sensitivity and it is used in the monitoring 
stage. 

The seizure detection results of the proposed novel two-
stage architecture system are compared with two other 
methods in Table III. The method-1 uses the coastline feature 
for seizure detection which is widely used in literature [7, 9]. 
In method-2, the coastline, energy and nonlinear energy 
features are used in a conventional single stage way. 

Table III evidences that the proposed algorithm 
outperforms method-1 in terms of specificity. In addition, it 

 
Figure 2.  Hardware implementation of the post-processing block  
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Table I.  FPGA implementation parameters 

Operating 
frequency 

Register 
[#] 

Memory 
bits 

Dynamic 
power 
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4 kHz 955 175104 1 μW 135 mW 
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has much faster detection time and lower DAR compared to 
method-2. Hence, the presented work provides an optimized 
trade-of between detection speed and false positive detection.  
The DAR parameter of the proposed system is 0.272 which 
means that the system needs to extract all three features only 
in 27.2% of the time and in 72.8% of the time only the single 
feature used in the monitoring stage, is extracted. 

V. CONCLUSION 

An efficient two-stage methodology for onset seizure 
detection is developed and implemented on hardware. It 
exploits coastline, energy and nonlinear energy features of 
iEEG signals, and the features are ranked based upon their 
seizure detection sensitivity in the training phase. It 
determines the optimized features for the monitoring and 
detection stages. The presented seizure detection algorithm 
demonstrates a perfect sensitivity of 100% as well as offering 
an optimized trade-off between the seizure detection speed 
and false positive detection. It outperforms the coastline 
algorithm in terms of specificity. Furthermore, it has 
demonstrated its superiority over using three features in 
conventional way in terms of detection speed and DAR. The 
proposed seizure detection system has a dynamic power 
consumption of 1 μW, thanks to the low DAR value of 0.272. 
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Table II.  Dataset information and feature ranking results 

Patient information Feature ranking 

ID Total Seiz [#] Trained Seiz [#] Rank 1  Rank 2  Rank 3 

1 2 1 Coastline Nonlinear energy Energy 

2 2 1 Coastline Nonlinear Energy Energy 

3 4 2 Energy Coastline Nonlinear energy 

4 4 2 Coastline Nonlinear energy Energy 

5 8 3 Coastline Energy Nonlinear energy 

6 4 2 Nonlinear energy Energy Coastline 

 

Table III.  Performance comparison table 

Parameter Method-1 Method-2 
Novel 

system 

Sensitivity 

[%] 
100 100 100 

Specificity 
[%] 

88.5 94.01 92.1 

Delay [sec] 5.7 12.9 7.8 

DAR n.a 1 0.272 
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Figure 3.  (a) iEEG signal with a seizure event (b) Seizure detection using 

coastline (c) Three features in a single stage and (d) proposed method  
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