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Abstract— The diagnosis and treatment of eye
diseases is heavily reliant on the availability of retinal
imagining equipment. To increase accessibility, lower-cost
ophthalmoscopes, such as the Arclight, have been developed.
However, a common drawback of these devices is a limited
field of view. The narrow-field-of-view images of the eye can
be concatenated to replicate a wide field of view. However, it is
likely that not all angles of the eye are captured, which creates
gaps. This limits the usefulness of the images in teaching,
wherefore, artist’s impressions of retinal pathologies are used.
Recent research in the field of computer vision explores the
automatic completion of holes in images by leveraging the
structural understanding of similar images gained by neural
networks. Specifically, generative adversarial networks are
explored, which consist of two neural networks playing a
game against each other to facilitate learning. We demonstrate
a proof of concept for the generative image inpainting of
retinal images using generative adversarial networks. Our
work is motivated by the aim of devising more realistic
images for medical teaching purposes. We propose the use of
a Wasserstein generative adversarial network with a semantic
image inpainting algorithm, as it produces the most realistic
images.

Clinical relevance— The research shows the use of generative
adversarial networks in generating realistic training images.

I. INTRODUCTION

Retinal images, also known as fundus images, capture the
appearance of the inner surface of the eye, where the retina
and optical disk are located [1]. The images are crucial for
the diagnosis of eye diseases and observing the progression
of treatment. High quality, wide field of view images can be
captured using expensive, state-of-the-art ophthalmoscopes.
In order to make fundus imaging more accessible, especially
in countries with emerging economies, lower-cost alterna-
tives such as the Arclight have been developed [2]. However,
a limitation of many lower-cost alternatives is that they often
only produce a narrow field of view. This means that multiple
images of the eye must be taken to capture it fully. These
images can be concatenated to obtain a more holistic view,
replicating the wide field of view. However, it is likely that
gaps exists, as not all angles of the eye are covered. Teaching
material for opthalmoscopes, such as the Arclight, are simply
artist’s impressions of the inner surface of the eye. Our work
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is motivated by the aim of creating more realistic retinal
images for teaching through the automatic, machine learning-
driven inpainting of missing areas.

Generative image inpainting is the automatic completion
of gaps in images using generative models. Generative
models learn to synthesise suitable images based on sample
images, which can then be used for inpainting. Recent
research has produced a number of inpainting algorithms,
which achieve a high level of realism and fewer bound-
ary artefacts by employing generative adversarial networks
(GANs). GANs consist of two neural networks, a generator
and a discriminator [3]. The generator synthesises artificial
image content, while the discriminator differentiates between
real and fake images. The two neural networks compete
against each other, facilitating learning. We demonstrate a
proof of concept for the automatic completion of retinal
images using GANs, focusing on realism over accuracy.

We propose a Wasserstein GAN (WGAN) for the genera-
tion of synthetic image content, as it has been shown capable
of learning and producing diverse and realistic output. The
artificial images synthesised by the generator are used to
semantically inpaint the retinal images based on contextual
and perceptual loss in regards to individual pixels. The
success of the inpainting is demonstrated quantitatively and
qualitatively.

II. BACKGROUND
A. Generative Models

Generative models are an unsupervised learning technique,
where the model learns to synthesise data exhibiting the
same properties and structure as the examples in the training
dataset. In regards to generative image inpainting, generative
models are utilised to synthesise image material for the
inpainting of missing areas in an image. Recent research has
put forward the use of GANs. GANs are a type of neural
network architecture, which can be used to produce synthetic
image material for inpainting. The focus on GANs springs
from the promising potential of being able to accurately
model the probability distribution of data in a dataset [4].

GANs are a deep learning framework proposed by Good-
fellow et al. [3]. The basic idea behind GANs is that two
neural networks, called the generator and discriminator, play
a game against each other [3]. The generator is a generative
neural network, which manufactures artificial samples. The
discriminator is a discriminative neural network, which aims
to differentiate between the artificial samples of the generator
and samples from the real data distribution. In literature, this
is often explained as the generator being a forger trying to
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produce a fake picture, while the discriminator is the police
trying to identify counterfeits [3].

Learning in GANs is driven by the generator aiming
to fool the discriminator. Let x be the real sample data
to be imitated. In order to allow the generator to learn
the distribution pg over the real data x, we define the
distribution pz(z), where z is a vector of random noise [3].
The generator G(z,θg) maps the random input noise z to
a data space [3]. G(z,θg) is a differentiable function with
respect to its parameter θg, which can be implemented via a
multilayer neural network [3]. The output of the generator is
a fake sample produced from the learned data distribution.

To play against the generator, the discriminator must
learn to differentiate between real and fake data samples.
The discriminator is defined as D(x,θd), a differentiable
function in respect to the parameter θd [3]. The output of
the discriminator is the probability of the given data sample
x being real or fake.

The generator and discriminator contest against each other
by respectively trying to minimise and maximise the shared
loss function L(z) = log(1−D(G(z))) [3]. The goal state
is for the discriminator to converge at an error of 0.5, as
this means it cannot differentiate between real and fake
data samples [5]. In this case, the generator has reached
its optimal state, where pg = pr [5]. Gradient descent and
backpropagation can be used for training. This is one of
the main advantages of GANs, as other architectures require
more complex algorithms such as Markov chains [3].

B. Shortcomings of Generative Adversarial Networks

Whilst the theory behind GANs makes a compelling
case in regards to their strength and versatility, they are
complicated to train. Special attention must be paid to the
configuration of the hyperparameters of the model, as GANs
are prone to a number of failure modes. An issue faced
by GANs is finding the Nash equilibrium [5]. It is hard
to reach a Nash equilibrium between the two adversaries,
as the discriminator and generator are trained independently
causing oscillations in the respective error [5]. Architectures,
such as a deep convolutional GAN (DCGAN) [6], have been
proposed to address this issue.

Another common problem in training GANs is the van-
ishing gradient problem. On one side, if the discriminator
performs poorly, the generator cannot be trained well as it
depends on the accuracy of the discriminator [5]. On the
contrary, if the discriminator performs too well the loss
drops close to 0, which slows or prohibits the learning of
the generator [5]. This failure mode can easily be identified
by examining the error in the discriminator and the output
produced by the generator.

Another significant failure mode of GANs is mode col-
lapse. Mode collapse is the failure of the generator to
produce a variety of samples [5]. The generator learns a
particular subset of samples which fool the discriminator and
begins producing these over and over again. A number of
solutions to this problem have been put forward, such as the
WGAN [7] and unrolled GAN [8] architectures.

C. Related Work

The use of GANs in image inpainting for retinal images
is novel. Current work on the inpainting of blood vessels in
retinal images exists, however, it does not use GANs, but
a recursive least square dictionary learning algorithm [9].
Current work using GANs for the synthesis of retinal images
uses annotated structural drawings of the retina [10]. While
this produces highly realistic results, it is ill-suited for the
task of inpainting as a high variety of structures must be
learned without additional information [10].

III. PROPOSED METHOD

The approach is sectioned into two parts. The first part
focuses on deriving a GAN architecture, which produces
artificial retinal images of high quality. The second step fo-
cuses on completing the original image through an inpainting
algorithm using the images generated.

A. Data

The dataset used for training and inpainting is the “Lon-
gitudinal diabetic retinopathy screening data” dataset, made
available by the Rotterdam Ophthalmic Institute [11]. The
dataset contains retinal images of 140 eyes, which we split
into a training and validation set. Images of the required
size are extracted by sliding a fixed window across the large
images. Only one sample image per eye is used to avoid
duplicate samples.

B. Image Generation

We explored a number of GAN architectures to obtain
synthetic images of the highest quality. We found that the
original and unrolled GANs were unable to learn to produce
sufficiently realistic retinal images, whereas the DCGAN
exhibited mode collapse. We deem the WGAN architecture
most suitable for the task, as it overcomes these issues and
produces images of the highest quality. The code is available
at: https://github.com/CharlotteMagister/
GenerativeImageInpainting.

We chose the WGAN architecture for its robustness. The
generator and discriminator follow the architecture of the
DCGAN proposed by Radford et al. [6]. However, the loss
functions used to train the generator and discriminator are
adapted to overcome the issue of mode collapse. WGANs
use the Wasserstein distance to quantify the distance between
the probability distribution of the training data and the
probability distribution modelled by the generator. The dis-
criminator aims to learn the parameter w yielding a suitable
K-Lipschitz continuous function fw from the function family
{ fw}w∈W , allowing to estimate the Wasserstein distance [7].
The generator learns to produce more realistic samples by
trying to minimise the Wasserstein distance [7]. However,
the WGAN’s discriminator cannot be used for inpainting.
This is due to the discriminator estimating the parameter
w of the K-Lipschitz continuous function rather than the
probability of the image being real. Therefore, the design
is extended to also train the original discriminator of the
DCGAN. The actual discriminator of the WGAN used for
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training the generator will therefore be called the critic.
Only the critic is involved in the minimax game with the
generator, while the discriminator is solely trained for later
use in the implementation of the inpainting algorithm. The
discriminator is trained in the same manner as in the DCGAN
design [6], as its architecture remains unchanged.

C. Image Inpainting

On a broad level we chose to adopt the semantic image in-
painting algorithm proposed by Yeh et al. [12]. This decision
is based on the nature of the specific inpainting challenge
at hand. Specifically, it splits the inpainting problem into
two tasks, allowing to explore which GAN architecture is
best suited for synthesising retinal images independently
from inpainting. Moreover, inpainting retinal images requires
special attention to image semantics in order to create a high
level of realism. For example, the veins should be continuous,
wherefore, the context and overall realism of the image must
be taken into account. For this task, the summation of the
context loss and prior loss is promising [12]. The context loss
captures the relation between the inpainted and surrounding
pixels, while the prior loss takes a more holistic approach
in punishing the overall realism of the inpainted image. Let
y be the image to be inpainted and M a mask of the hole.
Let Wi be the weight assigned to the pixel i, where Wi = 0 if
Mi = 0. Else, if Mi 6= 0 then Wi = ∑ j∈N(i)

(1−M j)

|N(i)| , where N(i)
are the neighbouring pixels of pixel i. The overall loss can
then be quantified using the following equation [12]:

L = ||W · (G(z)− y)||+λ log(1−D(G(z))) (1)

where λ is a free parameter, defining the ratio between
the prior and context loss.

The images inpainted are cropped to 64× 64 pixels, as
the inpainting algorithm’s loss function requires the selected
image and the image synthesised by the GAN to be of the
same size. We generate a random mask to remove a section
of the image to simulate the gaps in concatenated retinal
images. This artificial creation of gaps in the image allows
to perform the proof of concept, showing that retinal images
can successfully be inpainted to a certain degree. We then
use this image with the hole in the training algorithm to find
the best image for later inpainting.

Except for small changes, we closely follow the algorithm
described by Yeh et al. [12]. The recommended value for
λ , the fraction of the prior loss used, is 0.003 [12]. We
increase this value to 0.01, as the overall coherence of image
features, such as veins, is important. In contrast to [12], we
also define a flexible stopping condition, as the error still
significantly reduced after 1500 epochs. We determine the
learning rate experimentally to be 0.1, as this produces the
fastest inpainting results without oscillations. Moreover, we
explore Poisson blending and the simple weighted averaging
of pixels for blending to remove boundary artefacts.

D. Experimental Setup

We determine suitable hyperparameters for the models
experimentally, starting with the recommended values. The
experiments are run on a machine with 16 GB of RAM using
a GeForce GTX 1060 6GB GPU.

IV. RESULTS

GANs cannot be tested and evaluate in the traditional
sense of measuring accuracy. This is due to the generated
images not constituting a ground truth. The most prevalent
method for model evaluation is the examination of the output
images and behaviour of the error over time [13]. In order
to observe the performance of the model, we perform a
qualitative comparison of the visual output. Moreover, we
track the progress of training by graphing the loss of the
generator and discriminator over a number of epochs.

A. Image Generation

Figure 2 shows the fake images produced by the WGAN
generator next to a batch of real images. The artificial images
have a high degree of realism and do not appear to repeat. A
variety of real images are modelled successfully in regards to
the general features portrayed. For example, the optical disk
is replicated, as well as different vein structures. Moreover,
the hue varies as observed in the real image batch. This
output was produced after 80000 epochs.

In reference to Figure 1, it can be observed that training
is unstable, as there are oscillation in the error. However, the
error almost appears to converge, as the oscillations become
smaller when comparing the loss at around 20000 epochs
and 80000 epochs. Compared to other architectures, training
is more stable. We determine the optimal number of training
epochs at 80000, as the images did not appear to gain in
quality significantly after this. When examining the images
closely, it can be seen that small artefacts remain and the
image is slightly more pixilated than the original images.

We put forward the WGAN architecture as the best GAN
for synthesising retinal images, as a high variety of realistic
images is produced. To quantify the quality of the images
produced in comparison to the real images, we calculate
the signal-to-noise ratio (SNR) for a batch of images and
measure the accuracy of the discriminator. The SNR mea-
sures the amount of noise in an image [14]. We calculate
the average amount of noise in a batch of real and fake
images to be 1.364 and 1.443 decibel, respectively. It can
be deduced that the real and fake images are very close in
quality, with the fake images having only a slightly higher
amount of noise. Lastly, we verify the success of the image
generation through the discriminator. An accuracy of 50% is
obtained for the discriminator, which is desirable as it shows
that the generator successfully fools the discriminator with
its images, vouching for the image quality.

B. Image Inpainting

Figure 3 shows an inpainting result produced for an image
drawn from the evaluation dataset. The inpainted image
depicted in Figure 3c is produced within 10000 epochs of
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Fig. 1: The loss of the generator and discriminator.

Fig. 2: A batch of real and fake images, sampled from the
dataset [11] and trained WGAN generator, respectively.

training. The error initially drops quickly, but then begins to
plateau, indicating convergence. The final result produced
completes the missing gap to some level of detail. The
general colour of the image is replicated. Moreover, features
such as the optical disk and veins are replicated too. Never-
theless, the inpainted patch appears more pixelated than the
original image in general. Poisson blending does not appear
to improve the output image, while simple blending reduces
the boundary artefact slightly, as shown in Figure 3d and 3e
respectively. In conclusion, the inpainted section matches the
colour of the rest of the image and produces rough features,
but fails to replicate fine details.

(a) Original Image (b) Image with Gap (c) Inpainted Image

(d) Poisson Blended Image (e) Blended Image

Fig. 3: The image inpainting process for an image sampled
from the dataset [11].

Comparing the example output with artist’s impressions,
it can be argued that a higher level of realism is achieved,
as a real retinal image is inpainted and various structural
properties are replicated. However, the inpainted area is more
pixelated and has lower resolution. Significant boundary

artefacts are produced, even when blending is applied. This
draws attention to the inpainted section. Potential improve-
ments on the implementation could improve the resolution
and final inpainting produced. Nevertheless, the application
of generative image inpainting to retinal images arguably
produces more truthful retinal images for teaching.

V. DISCUSSION

We proposed a method using a WGAN for inpainting holes
in composite retinal images based on contextual and prior
loss. We successfully demonstrated a proof of concept of
the synthesis of feigned retinal images and the inpainting of
gaps in retinal images. In terms of realism, our automatic
inpainting outperforms the artist’s impression of the retina.
However, our automatic inpainting methodology is limited
by the image size produced by the GAN, which should
be considered by future work. Furthermore, the risk of
hallucinated structures must be explored. Possible future
work also includes producing an end-to-end solution for
inpainting stitched retinal images. In conclusion, the work
has profound implications for the synthesis of high-quality
teaching material for medicine and biology. Nevertheless, its
use should be accompanied with a careful evaluation of risk
involved in using synthetic imagery.
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