
  

  

Abstract— Detection of lung contour on chest X-ray images 

(CXRs) is a necessary step for computer-aid medical imaging 

analysis. Because of the low-intensity contrast around lung 

boundary and large inter-subject variance, it is challenging to 

detect lung from structural CXR images accurately. To tackle 

this problem, we design an automatic and hybrid detection 

network containing two stages for lung contour detection on 

CXRs. In the first stage, an image preprocessing stage based on 

a deep learning model is used to automatically extract coarse 

lung contours. In the second stage, a refinement step is used to 

fine-tune the coarse segmentation results based on an improved 

principal curve-based method coupled with an improved 

machine learning method. The model is evaluated on several 

public datasets, and experiments demonstrate that the 

performance of the proposed method outperforms 

state-of-the-art methods. 

 
Clinical Relevance— This can help radiologists for automatic 

separate lung, which can decrease the workloads of the 

radiologists’ manually delineated lung contour in CXRs. 

 

I. INTRODUCTION 

Lung Chest X-ray images (CXRs) are widely used in 
clinics due to their low cost and low radiation dose. During the 
COVID-19 outbreak, CXR is considered as a frontline 
imaging test. Accurate lung Region of Interest (ROI) detection 
in CXRs is often needed in Computer-Aided Diagnosis 
(CADx) because it is an important step for diagnosing lung 
diseases. However, it remains a challenging task for accurate 
lung segmentation in CXRs due to various reasons, including 
(1) the overlap between the lung and other anatomical 
structures (i.e., heart, clavicle bones, and rib cage); (2) edges 
at the rib cage and clavicle make many minimization methods 
to get stuck at local minima during optimization, and (3) 
inconsistencies in anatomical shape between different 
individuals make segmenting small costophrenic angles 
challenging. 

Many different segmentation methods have been proposed 
for medical segmentation in CXRs, including (1) threshold 
segmentation methods, (2) region segmentation methods, and 
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(3) contour detection methods. Ahmad et al. [1] proposed a 
Content Based Medical Image Retrieval System (CBMIRS) 
for lung segmentation, but the Jaccard Similarity Coefficient 
(Ω) was only 0.87 when they tested the method on a public 
dataset. Thomas et al. [2] mainly combined the improved 
GrowCut method for lung tumor segmentation in positron 
emission tomography. Chen et al. [3] presented a lung contour 
detection method using deep convolutional encoder-decoder 
architecture (SegNet) and tested on different public datasets, 
but the Dice Similarity Coefficient (DSC) on the enhanced 
chest X-ray (ECXR) dataset is only 0.851. Compared with the 
other methods, the contour detection method easily obtains the 
shape of the anatomical structure with less time complexity. 

The contour detection method is mainly used to 
approximate the contour of tissues by using region expression 
or curve description. In Ref. [4], Farhangi et al. designed a 
lung nodule segmentation method using Sparse Linear 
Combination of Training Shapes (SCoTS). However, the 
performance of this proposed model strongly depends on the 
diversity and accuracy of the training shapes. Li et al. [5] 
proposed a lung nodule detection in CXRs using the 
multi-resolution convolutional networks, while Peng et al. [6] 
proposed a hybrid method combining the principal 
curve-based method and machine learning-based network for 
lung segmentation. 

In this study, we propose a hybrid lung contour detection 
method in CXRs. Our main contributions are summarized as 
follows: (1) a hybrid network is proposed for lung contour 
detection that automatically achieves not only the overall lung 
contours but also the ROI contours. (2) Compared with our 
previous works [7], we propose an improved Adaptive Closed 
Polyline Searching Method (ACPSM) to filter the abnormal 
vertices using different normalization methods and adding a 
new vertices cleaning method; (3) Compared with Leema et al. 
[8], we use a new memory-based mechanism to store the best 
parameters from the previous cycle and then use them as the 
initial value for the next cycle. Moreover, in the mutation step, 
we use multi-mutation operators for generating the new 
mutant individual. (4) To express the lung ROI contour, to the 
best of our knowledge, a smooth mathematical model is used 
for the first time, which is represented by the parameters of the 
machine learning method. 
 
 
 
 

Lung contour detection in Chest X-ray images using Mask 

Region-based Convolutional Neural Network and Adaptive Closed 

Polyline Searching Method 

Tao Peng, Yidong Gu and Jing Wang* 

2021 43rd Annual International Conference of the
IEEE Engineering in Medicine & Biology Society (EMBC)
Oct 31 - Nov 4, 2021. Virtual Conference

978-1-7281-1178-0/21/$31.00 ©2021 IEEE 2839



  

II. METHOD 

A. Detection Framework 

For accurate lung contour detection, we develop a 

coarse-to-fine cascade network, where coarse segmentation is 

achieved by using Mask-RCNN [9] with data augmentation 

(Stage 1), and the optimization step that combines an 

improved ACPSM with an improved Adaptive 

Memory-based Differential Evolution-Backpropagation 

Neural Network Method (AMDE-BNNM) (Stage 2). The 

flowchart of the proposed method is shown in Figure 1. 

Furthermore, we add input/output of each step of the 
proposed method in TABLE I. 

Stage 1: Coarse segmentation 

Considering that the Mask R-CNN is a good choice for 

automatically segmenting objects, we use it as the coarse 

segmentation step. The main network architecture of the 

Mask-RCNN can be found in Ref. [9]. In this work, we use 

the rotation method for data augmentation, where each 

original image was rotated by 45o, 90o, 135o, 180o, 225o, 270o, 

and 315o until they reached the expected number of the 

augmented images. 

Stage 2: Optimization 

The optimization step is mainly used to refine the coarse 

segmentation results, which combines the improved ACPSM 
and Improved AMDE-BNNM. 

Improved ACPSM We have previously developed a 

semi-automatic method [7] termed Closed Polyline Searching 

Method (CPSM) that added several constraint conditions 

based on Polygonal Line Method (PLM) [6] for medical 

imaging segmentation. In this work, we proposed the 

ACPSM, shown in Figure 2. 

Compared with our previous work, the ACPSM presented 

in this work mainly has two improvements: (1) we use a new 
normalization step with stronger anti-interference to replace 

the Min-Max normalization method; and (2) furthermore, we 

add a new vertices cleaning method for filtering the abnormal 

vertices and detailed steps are summarized as following: we 

set the vertices cleaning Flag(vi) is 1 when (lsi-1 or lsi)>r, 

where lsi is the length of the i-th line segment, and r is the data 

radius; Otherwise, Flag(vi)=0. Furthermore, lsi should meet 

the following condition, 

si i+1 il = v v   1 i m−  
                   (1) 

where m is the number of vertices of the principal curve. 

Moreover, two new constraint conditions are newly added 

to clean the abnormal vertices. If either the following 

conditions are satisfied, the vertex vi will be removed: (1) 

vertex vi is outside the radius of the data points. (2) Too few 

sample points are projected to the vertex vi and neighboring 

segment consisting of vi and nearest vertex vi+1, where the 

number of the data points is close to zero. 
Improved AMDE-BNNM Due to the training results of the 

learning method (i.e., BNNM) strongly depend on the initial 

parameters (i.e., weight), we use the AMDE to search the 

optimal initial weight for the BNNM. Then we use BNNM’s 

parameters to express the smooth mathematical model of the 

lung ROI contour. 

Compared with Leema et al. [8], we use a memory-based 

mechanism and an improved mutation step. The main steps of 

AMDE is as following: First, we initialize the mutation 

Factor (F), Crossover Rate (CR), present iteration number (G), 

and max iteration number (GMax). Second, in the improved 

mutation step, we let xrk
G be the initial candidate, Np is the 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 
Figure 1. The flowchart of the proposed method. After augmentation, we 

annotate the ROIs (i.e., left and right lung), respectively. Then, the 

Mask-RCNN is used for the coarse segmentation for each ROI, and the 

optimization method is used for fine-tuning the coarse segmentation 

results of each ROI. Finally, we fuse the segmentation results of both left 

and right ROIs of the same slice, where we extract the coordinates of 

both ROIs’ segmentation results and overlay to the raw slice, and 

achieve the whole lung’s results. After segmentation, we evaluate the 

final results quantitatively and qualitatively. 

TABLE I 

INPUT/OUTPUT OF EACH STEP OF PROPOSED METHOD 

Method Input Output 

Mask R-CNN Raw data Coarse 

segmentation result 

ACPSM Coarse segmentation 

result (points) 

Data sequences 

(points and 

corresponding 

projection indexes) 

AMDE Initial parameters (shown 

in Stage 2) 

Optimal initial 

weight of BNNM 

BNNM Data sequences Refined result 
 

 

 

 

 

 

 

 

 
 

 

 

 

 
Figure 2. The flowchart of the proposed ACPSM. Furthermore, the 

definition of data sequence can be found in Ref. [6]. 
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number of solutions, rk is a random integer in the range of [1, 

Np]; and pG is the probability of using the mutation operator. 

The mutant individual vs
G+1 is generated as below,  

1 2 3

1 2 3 4 5

G G G

r 1 r r GG 1

s G G G G G

r 2 r r 3 r r

x rand (x x ),                           if  rand[0,1] p
v =

x rand (x x ) rand (x x ),  otherwise    

+
 +  − 


+  − +  −    (2) 

Third, we use both the crossover and selection step, 

according to Ref. [8]. Fourth, the set of all successful 

crossover probabilities (SCR) and mutation factors (SF) are 

selected, respectively, according to the Lehmer function. 

Fifth, mean mutation Factor (uF) and mean Crossover Rate 

(uCR) are updated by using SF and SCR, respectively. Sixth, if 

present iteration number G≥GMax, the best candidate is 

selected as the initial weight of the next BNNM. 

After determining the initial weight of the BNNM by the 

AMDE, we will train the BNNM. In the BNNM, we use a 

three-layer network. The output layer of the BNNM contains 

two units, corresponding to x and y, where x and y can be 
treated as the continuous functions c(x(t)) and c(y(t)), 

respectively, on projection index t [7]. Two output neurons 

c(•) of the BNNM can be described as follows, 
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(3) 

where t is the projection index, and Z is the number of hidden 

neurons. wi(i=1,2,…,Z) and vi,u(i=1,2,…,Z; u=1,2) are the 

weights from input layer to the i-th hidden neuron and from 

the i-th hidden neuron to the u-th output neuron, respectively. 

bu(u=1,2) is the thresholds of the u-th output neuron. 

Ti(i=1,2,…,Z) is the thresholds of the i-th hidden neuron. 

The proposed mathematical expression of lung ROI (i.e. 

left or right lung) contour can be obtained as follows. 

( )
2

2

c(x(t)) 1 1 (c(x(t)))
f (t) x(c(x(t))), y(c(y(t))) ( ,

2*c(x(t))

c(y(t)) 1 1 (c(y(t)))
                                                  )

2*c(y(t))

+ − −
= =

+ − −

(4) 

where x(c(x(t))) and y(c(y(t))) denote the x-axis and y-axis 
coordinate of the contour points, respectively. 

B. Materials 

In this work, we evaluated the proposed method using 

three different CXR datasets, ShenZhen hospital Chest X-ray 

dataset (SZCX) [6], Japanese Society of Radiological 

Technology dataset (JSRT) [6], and Montgomery County 
chest X-ray dataset (MC) [6], where SZCX, JSRT, and MC 

contain 662, 247, 138 CXRs, respectively. All the CXRs were 

rescaled to 512×512, and the ground truths are marked and 

verified by three board-certified radiologists. In the 

optimization step of our proposed method, the mathematical 

expression of lung ROI is denoted by the BNNM, where we 

set 10 neurons and 1000 epochs based on our previous work 

[7] for the BNNM to simplify the complex model and avoid 

overfitting. 

III. RESULTS 

We firstly split the SZCX and used 400 of them for 
training, 162 for validation, and the other 100 for testing. To 
obtain high accuracy, we use the rotation step to augment 
training data to 1200 images. Meanwhile, we set 120 epochs 
and used the COCO pre-trained weight for the Mask-RCNN. 
Figure 3 shows the quantitative results of different methods on 
100 SZCX testing cases. Furthermore, we randomly selected 
one representative case for evaluation as shown in Figure 4. 

 ACPSM-BNNM and ACPSM-AMDE-BNNM are 
principal curve-based and use 400 raw SZCXs for training. 
Meanwhile, they are semi-automatic models with as little as 
30% of the manually delineated points as inputs. The proposed 
method is the automatic and hybrid method consisting of the 
principal curve-based and deep learning-based methods. 

As shown in Figure 3, we can see that all the methods 
obtain reasonable lung segmentation, where the DSCs of all 
the methods are higher than 90%. Compared with 
ACPSM-BNNM (92.6%), ACPSM-AMDE-BNNM (93.39%) 
has a higher DSC, and the main reason is that the AMDE is 
used to select the optimal initial weight for improving the 
performance of the BNNM. Compared with the deep 
learning-based method (Mask-RCNN) (94.8%, 1200 training 
data), the principal curve-based method 
ACPSM-AMDE-BNNM (93.39%, 400 training data) uses 
fewer training data and obtains a slightly lower DSC, which 
demonstrates that the principal curve-based method has a 
good ability to fit the data accurately. Overall, our proposed 
method has obtained good performance. 

 

 

 

 

 

 

 

 

 

Figure 3. Performance results of different methods on SZCX testing cases 

 

 

 

 

 

 

 

 

 

 

Figure 4. Representative segmentation results for the whole lung. The red 
lines represent the ground truths, and the blue lines represent the 
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experimental results. Both the second and third rows show the region of 
interest of the first-row results. 

     To prove the generalizability of our method, we use the 
obtained model trained on SZCX to test the other two public 
JSRT and MC datasets. TABLE II shows the comparison of 
the average DSC of the whole lung between our method and 
several other methods. We used the same training, validation, 
and testing sets in all the models, where 1200 SZCXs (after 
augmentation) were used for training, 162 SZCXs for 
validation, and two different entire datasets (247 JSRTs and 
138 MCs) for testing. All the CPSM-BNNM, Hull-CPLM, 
and DBN-CPL are semi-automatic models with as little as 30% 
of the manually delineated points as inputs. Others are 
automatic models and use the raw slices directly. Results 
summarized in TABLE II show that our proposed method has 
the best performance among all the models. SD means 
standard deviation. 

TABLE II 

 QUANTITATIVE COMPARISON WITH THE STATE-OF-THE-ART METHODS. 

Referenc

e 
Method Model Dataset DSC 

p-value 

(Wilcoxon 

test) 

[7] 
CPSM- 

BNNM 
Hybrid 

JSRT 
91.3%+ 

0.11 

0.015 

MC 
89.5%+ 

0.13 

0.016 

[10] 
Hull- 

CPLM 
Hybrid 

JSRT 
96.5%+ 

0.02 

<0.001 

MC 
95.7%+ 

0.02 

<0.001 

[6] 
DBN- 

CPL 
Hybrid 

JSRT 
96.6%+ 

0.02 

<0.001 

MC 
96.2%+ 

0.02 

<0.001 

[11] 
Faster- 

RCNN 

Deep 

learning 

JSRT 
93.3%+ 

0.05 

0.007 

MC 
92.6%+ 

0.06 

0.009 

[12] UNet++ 
Deep 

learning 

JSRT 
95.69%+ 

0.02 

0.004 

MC 
95.01%+ 

0.04 

0.007 

Proposed 

method 

Proposed 

method 
Hybrid 

JSRT 
97.2%+ 

0.01 

<0.001 

MC 
97%+ 

0.02 

<0.001 

IV. CONCLUSION 

In this work, a hybrid method is presented for lung 
segmentation on CXRs. Results show that the better accuracy 

of our proposed method against state-of-the-art methods. 

Future work can be focused on the evaluation of different 

modalities or different organs. 
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