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Abstract— Artifacts and defects in Cone-beam Computed
Tomography (CBCT) images are a problem in radiotherapy
and surgical procedures. Unsupervised learning-based image
translation techniques have been studied to improve the image
quality of head and neck CBCT images, but there have been
few studies on improving the image quality of abdominal CBCT
images, which are strongly affected by organ deformation due
to posture and breathing. In this study, we propose a method
for improving the image quality of abdominal CBCT images by
translating the numerical values to the values of corresponding
paired CT images using an unsupervised CycleGAN frame-
work. This method preserves anatomical structure through
adversarial learning that translates voxel values according to
corresponding regions between CBCT and CT images of the
same case. The image translation model was trained on 68 CT-
CBCT datasets and then applied to 8 test datasets, and the
effectiveness of the proposed method for improving the image
quality of CBCT images was confirmed.

I. INTRODUCTION

Cone beam computed tomography (CBCT) is widely used
to capture images of a patient’s anatomy in a variety of
clinical situations. Its compact device size allows 3D imaging
during treatment or surgery [1] with lower radiation dose
than CT. However, the physical limitation of the CBCT
device restricts imaging area, which can cause beam harden-
ing, artifacts and defects in the reconstructed CBCT image.
Improving the image quality of CBCT images is a clinically
important issue for accurate radiation therapy and surgery.
[2][3].

In recent years, various deep learning methods have been
explored to improve the quality of medical images and to
reduce artifacts[2]. In the clinical field, it is difficult to
acquire paired CT-CBCT images from the same patient with
perfectly matched anatomical structures, so image translation
using unsupervised learning is of more interest than super-
vised learning such as scattering correction[4][5].

Generative Adversarial Network (GAN)[6] and its ex-
tended method, CycleGAN[7], are relatively new unsuper-
vised learning frameworks that have been widely studied. In
particular, CycleGAN has been proposed for image transla-
tion and is very effective in the field of medical imaging
where paired images are difficult to create[2]. Nakao et al.
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studied the reduction of dental metal artifacts using a 3D
generative adversarial network[8][9]. Liang et al. studied the
improvement of image quality of CBCT images in the head
and neck region[10]. They used a loss function based on
CycleGAN for image translation to achieve pixel values close
to those of CT images while maintaining the anatomical
structure of CBCT images of the head and neck region.
To improve the image quality of abdominal CBCT images,
Kida et al. used a method based on CycleGAN with a
loss function to perform image translation while maintaining
the anatomical structure of abdominal CBCT images[11].
However, due to the variety of anatomical structures in
abdominal CBCT and CT images, the generators may fail
to learn a meaningful mapping and produce totally distorted
images. In this study, to improve the image quality of
abdominal CBCT images acquired during radiotherapy for
prostate cancer, we applied the CycleGAN framework to
construct an generative adversarial network that performs
translation between a set of CBCT images and a group
of CT images. To solve the problem of translating images
while preserving the anatomical structure, we propose to use
rigid registration to generate training data for unsupervised
learning. Within the framework of image translation based
on unsupervised learning, we compared our method with
conventional methods. Then, we evaluated the performance
of the translation from two perspectives: CT value translation
and anatomical structure preservation.

II. METHODS

To improve the image quality of CBCT images based on
unsupervised learning, we use a pair of CBCT images and
CT images acquired from the same patient. We define the
set of CBCT images as X = {xi}(i = 1, 2, ..., N) and the
set of CT images as Y = {yj}(j = 1, 2, ...,M), we apply
the basic framework of CycleGAN[7] to learn the function
of image translation from the image sets X to the image sets
Y . The following two points are the target to be achieved in
the proposed image translation.

1) Reduces artifacts in the CBCT image and translates it
to the correct CT value of the tissue to be imaged

2) Preserve the anatomy of the CBCT image during the
translation

A. Dataset and preprocessing

In this study, we used CBCT images (512×512 pixels, 48-
93 slices) and CT images (512×512 pixels, 134-226 slices)
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Fig. 1. Visual comparison of CT and CBCT images; CBCT images contain
artifacts and have a smaller imaging range than CT images. (a) CT image
taken for treatment planning, (b) CBCT image taken on the day of treatment.

of 76 prostate cancer patients who underwent radiotherapy
at Kyoto University Hospital are used as image group X and
image group Y. Figure 1 (a) shows the CT image obtained
before radiotherapy planning, and (b) shows the CBCT image
during radiotherapy of the day. The yellow arrows show the
difference of appearance between CBCT and CT images of
a same patient, and only the CBCT images contain artifacts
and defects. In addition, the CBCT has a narrower field of
view than the CT image, and therefore it can visualize a
circular area of 25.5 cm in diameter centered on the prostate
in a slice. CBCT images consist of 48-93 slices, and around
±7 cm are visualized in an axial direction. On the other
hand, CT images have a wider imaging field of view and
imaging area than CBCT images.

Conventional approaches based on the framework of un-
supervised learning may not be able to learn appropriate
translations for each region sufficiently due to the variety
of organ shapes and bone structures in abdominal CBCT
and CT images[11][12]. To solve this problem, in this study,
we argue that it is effective to select and input slice images
whose imaging regions are corresponded between CBCT and
CT images. The datasets in this study are CBCT volume
images and CT volume images of the each patient, and
we can find spatially corresponded regions between CBCT
image and CT image. For learning, it is enough to prepare
slice images with corresponding imaging regions, and there is
no need to involve deformation. Therefore as a preprocessing
step, by rigid registration using the CT image as the source
and the CBCT image as the target of the same patient,
two images were three-dimensionall corresponded. Figure
2 shows an example of the registration result. By rigid
registration, the imaging range and the size per voxel can
be matched between the CBCT image and the CT image
of the same patient. Of the 76 datasets created by this pre-
processing, 8 datasets randomly selected were used as test
data, and the 68 datasets were used as training data.

B. CycleGAN

In a CycleGAN, a network is constructed using two
GANs. From two image groups X and Y , slice image x
and y are used as input data, and the image generator G

(a) (b) (c)

Fig. 2. Rigid registration as a pre-processing of the dataset to align the
imaging ranges of CT and CBCT images. (a) CT image (source), (b) CT
image after registration, (c) CBCT image (target).

and discriminator D pairs (GY , DY ) and (GX , DX ) are
trained adversarially. The basic bjective of CycleGAN can
be described as

Lcgan = Ladv(GY , DY , X, Y ) + Ladv(GX , DX , X, Y )

+ λcycLcyc(GY , GX) (1)

Here, Ladv refers to adversarial loss, which is the original
loss function of GAN. GY tries to generate image GY (x)
that is similar to image x in X from image y in Y , whereas
DY tries to discriminate whether the image is the real image
y or generated image GY (x). The same is true for GX

and DX . Adversarial loss measures the performance of D.
Lcyc refers to cycle consistency loss, where weight λcyc
controls the relative strength of the adversarial loss and cycle
consistency loss. By adding the cycle consistency loss to the
loss function, the model is trained to generate a reconstructed
image that corresponds to the real image. Therefore, we can
request the model to generate an image that retains the real
image features.

C. Loss function with regularization

In order to achieve the preservation of anatomical structure
during the translation, which is one of the tasks of this study,
we added Intensity Loss[9], which is defined by the following
equation (2).

Lint = Ex||GY (x)− x||1 + Ey||GX(y)− y||1 (2)

The first term in Equation (2) is a loss function that acts
as a regularization term that penalizes the error before and
after passing through the generator GY , that is, the difference
between the original CBCT image x and the translated CT
image GY (x). This prevents the CT value of the entire image
from changing substantially before and after the translation,
and as a result, it is considered effective in preserving the
anatomical structure.

The above equations (1) and (2) are summarized in equa-
tion (3), which is defined as the final objective function of
this study. This is the proposed objective function.

L = Lcgan + λintLint (3)
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λint is a weight that controls the strength of the regular-
ization term. The following equation (4) gives the learned
model G∗

Y to be obtained.

G∗
Y , G

∗
X = arg min

GY ,GX

max
DY ,DX

L (4)

III. EXPERIMENTS AND RESULTS

In this study, we divided the training data of 68 subjects
into the CBCT image group and the CT image group, and
performed unsupervised learning using the proposed method.
Throughout this study we use λcyc = 10 according to
the previous experiment . Then we quantitatively evaluated
the translation performance of the trained model using the
proposed method, and compared conventional methods.

A. Training and evaluation methods

In order to investigate the image translation performance
of the proposed method, two experiments are conducted:
one is to investigate the relationship between the weight
parameters of the regularization term and the translation
performance, and the other is to compare the proposed
method quantitatively with the conventional method. Each
experiment is divided into a training phase and an eval-
uation phase. First, in the training phase, CBCT and CT
image groups of 68 patients were used as training data, and
adversarially learned using the proposed method. Next, in
the evaluation phase, we translated the test CBCT images of
8 patients using the trained model, and after checking the
translated images, we quantitatively evaluated the translation
performance. For the quantitative evaluation, we need a
reference image that can be used as a ground truth. The
reference image must satisfy the following two conditions.

1) The anatomical structure should match the CBCT
image of the test data.

2) Artifacts should be reduced and the CT values of the
tissue to be imaged should be representative.

In this study, a reference image was created by aligning a pair
of CBCT and CT images of the same patient. Specifically, in
the test data, we deformed the CT image by non-rigid regis-
tration with the CT image as the source and the CBCT image
as the target of the same patient. After visually confirming
that the registration was highly accurate near the prostate,
the deformed image was defined as the reference image. In
this study, the evaluation range was limited to a local region
near the prostate to evaluate the translation performance.
Figure 3 shows that 256×256 pixels and 20 slices near the
prostate were extracted from the three-dimension volume
images and used for evaluation. The range of CT values for
each image was set to be small so that finer differences in
CT values could be evaluated. Specifically, CT values below
-300 were set to -300 and CT values above 150 were set to
150, resulting in a final range of CT values of [-300, 150]. In
the evaluation, histograms are obtained for the CBCT image,
the translated image, and the reference image of the local
volume. The mean and standard deviation(SD) of the CT
values of each image are then calculated. The correlation

20pixel 256pixel

256pixel

Fig. 3. Region of interest for evaluation. 256x256pixels, 20 slices near the
prostate were extracted and used for evaluation.

TABLE I
AVERAGE OF 8 CASES OF THE EVALUATION VALUES (MEAN, STANDARD

DEVIATION(SD), CORRELATION COEFFICIENT) OF THE ORIGINAL CBCT
IMAGE AND THE TRANSLATED CT IMAGE LEARNED BY VARYING THE

WEIGHT COEFFICIENTS λint OF THE REGULARIZATION TERM.

original 0 5 10 15 20 25 reference
Mean -67 0.97 7 8.6 7.1 -62 -65 16
SD 100 83 81 77 76 95 97 79

Correlation 0.45 0.92 0.89 0.92 0.9 0.47 0.43 1

coefficient between the histogram of the translated image
and the histogram of the reference image is also calculated.
These evaluation indices were used to quantitatively evaluate
the translation performance.

B. Parameter Tuning

The purpose of this experiment was to tune the weight
parameters of the regularization term and to verify the
effectiveness of the loss function with regularization in the
proposed method. After adversarial learning with six differ-
ent weight coefficients of the regularization term (λint =
0, 5, 10, 15, 20, 25), the performance of each translation was
quantitatively evaluated. Average of 8 cases of the evaluation
values results of each weight are shown in Table I. It
can be confirmed that the proposed method can translation
images close to the reference image up to λint = 15. For
λint = 20, 25, the regularization term was too strong and the
translation failed, outputting an image that was almost the
same as the original image. Overall, the results show that the
conversion performance is high when λint = 10.

C. Comparison with conventional methods

The purpose of this experiment is to verify the effective-
ness of the proposed method, and to do so, we compare
it with the conventional method, CycleGAN[7]. We trained
training data for each of the proposed method and Cycle-
GAN, and performed quantitative evaluation and comparison
using the test data. In this experiment, we set the regu-
larization term weight factor λint = 10 for the proposed
method based on the results of the previous experiment.
First, we visually compared the translated images of each
method. An example of the translation results is shown in
Figure 4 (a). Comparing the yellow arrows in case A and
the green arrows in Case B, we can see that the proposed
method can retain the anatomical structure of the original
image. Next, the histogram of the evaluation range for each
image for case A is shown in Figure 4 (b). Comparing the
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Fig. 4. Comparison of two examples of translation results between a model using the conventional method and a model using the proposed method. (a)
The first column shows the reference image of each case. The second column shows the original CBCT images of each case. The third column shows
the images translated from the CBCT images of each case by the conventional method. The fourth column shows the images translated from the CBCT
images of each case by the proposed method, (b) Histogram of each image in case A

TABLE II
EVALUATION VALUES (MEAN, STANDARD DEVIATION (SD),

CORRELATION COEFFICIENT) OF THE ORIGINAL CBCT IMAGE AND THE

CT IMAGE AFTER TRANSLATION BY EACH METHOD

original conventional proposed reference
Mean -67 -0.69 8.6 16
SD 100 83 77 79

Correlation 0.45 0.88 0.92 1

dashed line and the blue line in the histogram, we can see
that the red line is closer to the shape of the blue line.
Therefore, the proposed method is considered to have better
conversion performance. Then, we compared the conversion
performance of the proposed method and the conventional
method with each quantitative evaluation index. Average of
8 cases of the evaluation values results of each method are
shown in Table II. From these results, it can be confirmed that
the proposed method has a higher conversion performance
than the conventional method.

IV. CONCLUSIONS

In this study, we used an adversarial generative network
that maps the input slice images based on the CycleGAN
framework to improve the image quality of CBCT images
based on the unsupervised learning framework. As a result of
evaluating the translation performance of the learned model
by the proposed method, we confirmed that the proposed
method is effective for removing artifacts and translating
CT values, and that mapping regions contained in slices is
effective for preserving anatomical structures.
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