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Abstract— Knowledge regarding the site-of-collapse in the
upper airway in obstructive sleep apnoea (OSA) has impli-
cations for treatment options and their outcomes. However,
current methods to identify the site-of-collapse are not suitable
for clinical practice due to the invasive nature, the time/cost of
the tests and the inconsistency of the obstruction site identified
with natural and drug-induced sleep. In this study, we adopted
an unsupervised algorithm to identify the predominant site-of-
collapse of the upper airway during natural sleep using noctur-
nal audio recordings. Nocturnal audio was recorded together
with full-night polysomnography using a ceiling microphone.
Various acoustic features of the snore signal during hypopnoea
events were extracted. We developed a feature selection algo-
rithm combining silhouette analysis with the Laplacian score
algorithm to select the high performing features. A k-means
clustering model was developed to form clusters using the
features extracted from snore data and analyse the correlation
between the clusters generated and the predominant site-of-
collapse. Cluster analysis showed that the data tends to fit
well in two clusters with a mean silhouette coefficient of 0.79
and with an accuracy of 68% for classifying tongue/non-tongue
collapse. The results indicate a correlation between snoring and
the predominant site-of-collapse. Therefore, it could potentially
be used as a practical, non-invasive, low-cost diagnosis tool for
improving the selection of appropriate therapy for OSA patients
without any additional burden to the patients undergoing a
sleep test.

I. INTRODUCTION

Conventional treatments for OSA include positive airway
pressure devices, oral appliance (OA) therapy, and surgery
[1, 2]. The choice of therapy is guided by the severity of OSA
and patient preference. Even though different treatments are
available, efficacy is highly variable between patients, creat-
ing the need to predict treatment outcome [3]. Studies have
shown that information regarding airway obstruction site
plays a role in predicting treatment outcome and, therefore,
helps clinicians choose the most appropriate treatment. This
is especially true for patients who have “tongue-base” airway
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collapse, as they appear to be more likely to gain a large
therapeutic benefit from OAs [4, 5].

Conventional methods in determining the site-of-collapse
involve using an endoscope or a pressure catheter during
drug-induced or natural sleep [4, 5]. Unfortunately, these
methods are not well tolerated by patients due to their inva-
sive nature, time/expense of the tests, and the inconsistency
of the obstruction site identified with natural sleep and drug-
induced sleep, limiting their clinical application [6, 7].

Previous studies have shown that acoustic analysis of
snoring has been successfully implemented in the diagnosis
and estimation of the severity of OSA [8, 9]. However,
a limited number of studies have been conducted to de-
termine the relationship between snoring and obstruction
sites. The common method, VOTE classification (velum (V),
oropharyngeal area (O), tongue (T), and epiglottis (E)) has
been explored by researchers utilising different classification
algorithms and signal processing techniques to categorise the
snore signal [10, 11]. However, studies have demonstrated
inconsistencies regarding the obstruction site identified in
terms of natural and drug-induced sleep [6], and acoustic
properties of snoring differ significantly from natural sleep
[7]. Another drawback was that all the studies were based
on analysing a single snore episode and thus were unable
to determine the predominant site-of-collapse over an entire
night.

Our previous study has demonstrated that snore during
hypopnoea can be used to identify the predominant site-
of-collapse for a patient [12-14]. A classification model
was adopted to predict the predominant site-of-collapse in
the upper airway and achieved an accuracy of 81% for
discriminating tongue/non-tongue collapse [12]. One of the
limitations of this study was that a gold standard method
was not used to identify the site-of-collapse, and the ground
truth for the labelling employed was based on an indirect
method that manually identifies the site-of-collapse based
on airflow signal. This bypassed the clinical limitations of
more invasive methods but at the expense of potentially
introducing some labelling errors. We conducted another
study to find the correlation between clusters generated
using snore features and the site-of-collapse [15]. The result
indicates that acoustic features of snore data tend to form
clusters based on the site-of-collapse. This supports the role
of the snore signal as a correlate of the site-of-collapse.
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Motivated by the possibilities of an unsupervised method
in resolving the challenges in labelling, the objective in the
current study was to introduce a clustering algorithm to
identify predominant site-of-collapse for an OSA patient and
compare its performance with the classification model.

II. METHOD

A. Data Collection

Nocturnal audio data from 58 patients, who had attended
a full night sleep study at the Sleep Investigation Unit,
Royal North Shore Hospital Sydney, and received a diagnosis
of OSA (AHI≥5) were used for this study. The audio
signal was recorded with a Condenser Microphone, which
is placed on the ceiling approximately 1.75m above the
patient’s bed. The audio signal was sampled at a frequency
of 32 kHz with a resolution of 16-bits per sample. This
study received ethical approval by the Northern Sydney
Local Health District Human Research Ethical Committee
as application RESP/18/184.

B. Data Labelling

In this study, we adopted an indirect process for labelling
the site-of-collapse using the airflow signal shape (flattening
or scooping of airflow contour) as shown in Fig. 1 [16],
similar to our previous studies [12-15]. Based on this, we
generated a database of 1807 hypopnoea events (881 non-
tongue related and 926 tongue related collapse). In the next
step, the predominant site-of-collapse for each patient was
identified by adopting a similar rule implemented by Xu et
al. (if more than 60% of the total events were the same
event type, then the predominant site-of-collapse for a patient
was set to the majority type) [17]. This process resulted
in 26 (45%) patients labelled as non-tongue and 32 (55%)
patients as tongue-based collapse. This labelling information
was used to evaluate the model performance (external cluster
validation).

Fig. 1. Identifying site-of-collapse using thirteen reference nasal pressure
signals [16]. The darker tracing represents the ensemble average inspiratory
flow.

C. Signal Processing

1) Preprocessing: As the audio signal was recorded using
a general-purpose microphone, a spectral subtraction method
was deployed to remove background noise from the audio
recordings to improve the signal-to-noise ratio.

2) Feature Extraction: Fifty identical features were de-
rived from each hypopnoea event. The time-domain features
were: (1) energy, (2) entropy, and (3) ZCR. The frequency-
domain feature consisted of (1) first three formant fre-
quencies, (2) thirteen MFCC and its first derivatives, (3)
twelve spectral chroma features, (4) spectral entropy, (5)
spectral flux, (6) spectral centroids, (7) spectral roll-off, and
(8) fundamental frequency and harmonic frequency. Further
details on the signal processing methods can be found in
[12].

D. Cluster Analysis

1) K-means clustering: K-means clustering is a simple,
fast and efficient data clustering algorithm that works iter-
atively to allocate each data point to one of k subgroups
(to the nearest cluster) based on the similarity of features
provided [18].

2) Silhouette analysis: Silhouette analysis can be used to
analyse the separation distance between the clusters gener-
ated. It can also be used to validate the performance of the
clusters by measuring how well a data point fits into its own
cluster (cohesion) compared with other clusters (separation)
[19].

3) Laplacian Score: Laplacian Score is a widely used
feature ranking algorithm used in unsupervised learning
to select the most important features to build the model
[20]. Laplacian Score evaluates the importance of features
according to their locality preserving power and ranks the
features based on the score.

4) Optimal Cluster Number: To find the optimal cluster
number, the silhouette values for each feature and all features
together were determined by varying the number of clusters,
ranging from two to six. The optimal cluster number for a
particular feature is the number with the maximum silhouette
value. Finally, the optimal cluster number of the model was
identified using the majority principle-that is, selecting the
most common cluster number from individual feature results.

5) Feature Selection: We developed a feature selection
algorithm combining silhouette analysis and the Laplacian
score algorithm. The algorithm consisted of the following
steps

• Determine the optimal number of clusters for the model
using all of the features separately, as described in the
previous section.

• Using the optimal cluster number, evaluate the mean
silhouette value and silhouette plot for each feature.

• Select the features with a uniform cluster thickness
using the silhouette plot. The thickness of the silhouette
plot quantifies the cluster size and it is calculated by the
identifying the number of data points in a cluster. For
our purposes, we selected features where the number of
data points in a cluster was less than 60
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• Rank the selected features from the previous step based
on the importance using Laplacian scores.

• Evaluate the performance of feature combinations by
sequentially adding features based on the rank of the
features from the previous step and calculating the mean
silhouette value.

• Repeat the previous step until the mean silhouette value
reaches the first maximum. The feature set associated
with this maximum becomes the selected feature set.

III. RESULTS AND DISCUSSION

A k-means clustering algorithm was developed using
the relevant features to assign snore data into clusters and
investigate the correlation between the predominant site-of-
collapse and the clusters generated.

1) Optimal Cluster Number: The results revealed that the
most common cluster was two, as the optimal cluster number
for 36 out of 50 features (72%) was two. Also, the optimal
cluster was two when all of the features were combined.
Based on the results, the optimum cluster for the model was
determined to be two.

2) Feature Selection: Using the optimal cluster number,
the mean silhouette value and silhouette plot for each fea-
ture were evaluated using a 2-means clustering. The “best”
features were selected based on the thickness (uniform
thickness) of the silhouette plot , where a similar thickness
indicates an approximately equal number of data in the
cluster. Further details on the silhouette plot can be found
in [15]. As the optimal cluster number was two for the
model, the best features comprised of clusters with less
than 60% of the total data points. Based on the number of
data points in a cluster, the algorithm selected 27 features
by discarding the features with the number of data points
in a cluster higher than 60% of the total data points. The
feature set consists of 7 MFCC coefficients, the 7 first
derivatives of MFCC coefficients, 5 chroma features, the first
3 formant frequencies, energy, ZCR, spectral entropy, flux,
and fundamental frequency.

In the next phase, the Laplace score was identified for the
27 selected features and the selected features were ranked
based on the Laplacian score. Despite the fact that the rank-
ing was based on the score, there was only a slight difference
between the Laplace scores for all features. As a result, we
assess performance by calculating the mean silhouette value
by sequentially adding features based on their rank and then
selecting the features until the mean silhouette value reaches
the first maximum. The results showed that the maximum
mean silhouette value was achieved (0.79) when the cluster
generated with the first 17 features, and therefore, the 17
features were selected to build the final model. Table I shows
the features that were selected.

For the final system, a 2-means cluster model was devel-
oped using the selected features. Internal cluster validation
showed that the data had a strong tendency to form two
clusters, with a mean silhouette value of 0.79. Additionally,
1442 (80%) data points had silhouette values higher than the
mean silhouette value (0.79).

TABLE I
FINAL FEATURES SELECTED FOR THE MODEL

No Feature

1 1st, 2nd, 4th, 6th, 9th and 12th Coefficient of MFCC

2 2nd, 4th, 5th, 7th and 9th Coefficient of First derivative MFCC

3 1st, 4th, 5th and 7th Coefficient of spectral chroma

4 1st and 2nd Formant frequency

3) External Cluster Validation: External cluster validation
was performed to evaluate the performance of the model
using the manual labels and to analyse the correlation
between the cluster formed and the predominant site-of-
collapse in the upper airway. As the optimal cluster number
was identified as two for the model, we related the clusters
with tongue and non-tongue related collapse. Furthermore,
studies have demonstrated that the information regarding
tongue/non-tongue is the most important measure as the
best predictor of OA success, and patients with tongue-base
collapse gain a significant therapeutic benefit from OAs [4,
5].

For performance validation, cluster 1 and 2 were labelled
as tongue and non-tongue base collapse, respectively, and
then identifying the predominant site-of-collapse. The pre-
dominant site-of-collapse for a patient was identified using
the same rule in the manual labelling of the patient (i.e.,
if more than 60% of total events comes in one cluster,
while clusters were labelled as tongue and non-tongue base
collapse). A representative example of k means clustering
using the first two relevant features is given in Fig. 2. This
model achieved an overall accuracy of 68% (39/58) for
categorising tongue/non-tongue related collapse based on the
predominant site-of-collapse. Detailed results are given in
Table II.

Fig. 2. 2D representation of k−means clustering. Clustering was done
with first two features identified using Laplacian scores for the simple visu-
alisation. For the external cluster validation, cluster 1 and 2 were labelled
as tongue and non-tongue respectively. ◦ represents the misclassified event
based on the manual labelling.

Comparing the classification [12] and clustering model
performance, the classification algorithm achieved an accu-
racy of 81% while the clustering model achieved an accuracy
of 68%. Although the classification model outperformed the
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TABLE II
CONFUSION MATRIX FOR THE PREDOMINANT SITE-OF-COLLAPSE

(TONGUE/NON-TONGUE) CLASSIFICATION.

Cluster Based Labelling

Manual
Labelling

Non-Tongue Tongue
Non-Tongue 16 10

Tongue 9 23

clustering model, the results indicate that the snore signal
had intrinsic properties relevant for the collapse site analysis.
Moreover, there are some advantages to the clustering algo-
rithm. Firstly, the clustering algorithm does not require labels
or ground truth information, whereas the classification meth-
ods require ground truth information. Another advantage of
cluster analysis is that the computation complexity is less
compared with the classification method, as the classification
algorithm requires a training set to tune the model.

Comparing the optimal features selected for the clustering
and classification models indicates that frequency related
features provide the most discriminating information regard-
ing the site-of-collapse. As the optimal features selected
predominantly comprise MFCC features (five out of seven
features in classification [12] and 11 out of 17 features
in clustering), MFCCs tend to play an important role in
identifying the obstruction site, which has successfully been
used in speech and snore analysis.

There are several limitations to this study. The main
limitation arose due to the implementation of k−means
clustering, as it is highly sensitive to initial values, and
there is difficulty in finding the optimal cluster number.
Another disadvantage was that our method currently requires
hypopnoea event scoring, limiting its application only to PSG
studies. Furthermore, the snores were chosen without regard
for body posture, affecting the recording signal quality and
audio frequencies. Further studies are needed to investigate
the correlation between clusters generated and the snore
signal, including more patient characteristics and predictions
regarding treatment outcomes.

IV. CONCLUSION

This study presents an analysis of the correlation between
the clusters generated using the features extracted from snore
data during hypopnoea events and the site-of-collapse. The
unsupervised approach used a k-means clustering to assign
data into clusters and investigated the correlation between
the predominant site-of-collapse and the clusters generated.
A feature selection algorithm was also developed to select
the most relevant features by combining silhouette analysis
with the Laplacian score algorithm. The performance of
the model was evaluated by comparing the automatic and
manually labelled data based on the predominant site-of-
collapse. Results showed that the model achieved an accuracy
of 68% in labelling the participants based on the predominant
site-of-collapse. The results indicate there exists a correlation

between the clusters and the predominant site-of-collapse,
which supports the evidence that the snore signal is useful in
determining the site-of-collapse, as discussed in our previous
studies.
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