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Abstract— Parkinson’s disease is a disorder that affects the
neurons in the human brain. The various symptoms include
slowness of motor functions (bradykinesia), motor instability,
speech impairment and in some cases, psychiatric effects such
as hallucinations. Most of these, however, are also common side
effects of natural aging. This makes an accurate diagnosis of
Parkinson’s disease a challenging task. Some breakthroughs
have been made in recent years with the help of deep learning.
This work aims at considering figure drawing data as a
time series of coordinates, angles and pressure readings to
train recurrent neural network models. In addition, the work
compares two recurrent network models, Long Short-Term
Memory and Echo State Networks, to explore the advantages
and disadvantages of both architectures.

I. INTRODUCTION

Parkinson’s disease (PD) is a neurodegenerative syndrome
characterized by the loss of dopaminergic neurons in the
substantia nigra pars compacta region of the midbrain and
the formation of filamentous inclusions (Lewy bodies) [1].
PD is the second most common neurodegenerative disease
after Alzheimer’s disease and is particularly common in in-
dustrialized nations, where it can be found in approximately
0.3% of the population. Their symptoms can be divided into
motor and non-motor. Motor symptoms include slowness
of movement (bradykinesia), stiffness and inflexibility in
muscles (rigidity) and tremor [2]. Non-motor symptoms
include depression, insomnia, dementia, anosmia, pain, and
constipation, among others [3]. Various studies have been
conducted to determine the aetiology of the disease, but its
exact cause is still unknown [4].

Currently, there is no cure or treatment to stop the neurode-
generation process [5]. Instead, treatments, such as levodopa,
focus on improving the quality of life of the patients [6].
Proper diagnosis of the disease is, however, a challenging
task. The non-motor symptoms are often poorly recognized
and inadequately treated [3]. Motor-based symptoms can be
indicators of other neurological conditions. Furthermore, the
same symptoms can be interpreted differently depending on
the examiner’s prior experience and training [7].

With the advent of machine learning, more systematic
diagnosis techniques have been proposed. Vallejo et al.[8]
applied evolutionary algorithms on drawing data to diagnose
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motor and cognitive deficiencies in PD. Oh et al.[9] used
Convolutional Neural Networks (CNNs) to analyze elec-
troencephalogram signals for PD abnormalities. [10] detailed
the use of CNNs on movement data collected from PD
subjects to detect freezing of gait. [11], [12] are examples of
using Recurrent Neural Networks (RNNs) for the diagnosis
of PD based on motor symptoms and drawing data.

In this paper, we evaluate the effectiveness of RNN
architectures to distinguish PD patients from healthy subjects
using drawing data collected from tablets. Specifically, we:

• analyze figure drawing data as a time series instead of
considering them as image data.

• evaluate two RNN architectures, namely Long-Short
Term Memory (LSTM) and Echo State Networks
(ESN), on how effective they perform the classification.

• compare performance metrics with those gathered from
an image-based CNN approach on the same dataset[13].

II. THEORETICAL BACKGROUND

A. Recurrent neural networks

RNNs are models in which there is a path from a given
node back to itself or to other nodes in the previous or the
same layer [14]. Recurrent connections imply that the output
at any given timestep not only depends on the input but also
on previous output(s). RNN’s ability to refer back to previous
outputs enables the learning of temporal relationships.

RNNs have a cardinal pitfall when it comes to setting
the weights of the recurrent connections. Traditional training
algorithms such as backpropagation or real-time recurrent
learning tend to be too slow compared to the time gap
between the input sequence entries. Furthermore, the error
signals that are propagated backwards, as a part of the
training, tend to either explode (exploding gradient) or
become extremely small (vanishing gradient) The former
situation leads to a situation of oscillating weights, while
if the latter situation occurs, the network could take an
indefinite amount of time to train the weights, or in some
cases, fail to train properly [15]. As a solution to the
vanishing gradient problem, Hochreiter et al.[15] proposed
the LSTM architecture, which was designed to remember
long sequences. An individual LSTM maintains a memory
cell with multiple gates inside of it to remember appropriate
information from previous inputs. The content inside the
memory cell is updated only when necessary [16].

B. Reservoir Computing

Reservoir computing is another set of computational ar-
chitectures derived from RNN theory. A reservoir computing
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model consists of a set of nodes (reservoir), which maps a
given input into a high dimensional space and a set of output
nodes (readout nodes), which read this high dimensional
representation and map it into the expected output [17].
The nodes in the reservoir are sparsely interconnected, and
the weights between them are fixed before training. The
only training involved is that of the readout nodes, which
is usually done by a computationally light method such as
linear or ridge regression [17]. This computational efficiency
is one of the key benefits that have attracted research in this
field. Two popular implementations of reservoir computing
are the ESN [18] and the Liquid State Machine (LSM).
The ESN typically uses sigmoid nodes in the reservoir,
while LSMs usually use spiking neurons. The ESN primarily
consists of three sets of nodes:

1) Input nodes: They take the input signal and transfer it
to the nodes in the reservoir. The weights of the con-
nection between the input nodes and the reservoir (Win)
are fixed during initialization and are not trainable.

2) Reservoir: A set of sparsely interconnected nodes that
operates as a typical RNN. The inter-connectivity of
nodes is typically kept at 1%, which allows the division
into a set of loosely connected sub-networks [19]. The
number of nodes in the reservoir depends upon the
task at hand. The weights of the synapses that connect
the nodes in the reservoir (W) are not trainable but set
during initialization and scaled by a constant known
as the “spectral radius”. This ensures that the reservoir
satisfies the Echo State Property (ESP), which means
that when provided with an input signal, it becomes
excited and develops a lingering internal response
signal that is perceived as a high dimensional non-
linear transformation of the input [20].

3) Output nodes: They map the high-dimensional non-
linear response from the reservoir to the desired output.
The weights of the connections between the reservoir
and these nodes (Wout) are randomly initialized and are
modified during training such that a linear combination
of the high-dimensional reservoir response maps to the
expected output values.

C. Data augmentation

Data augmentation consists of a collection of techniques
used to enhance the size and quality of data available to
train a model. This increase results in greater performance of
the model. Shorten and Khoshgoftaar [21] described various
augmentation methods that can be applied on image data.
In time series, however, the data is an ordered sequence of
entries, and operations such as rearranging parts of the input
would not guarantee the validity of the resulting samples. We
list some transformations that can be applied to time series
data:

1) Translation: Since in an image dataset, adding a con-
stant to the coordinates only displaces the drawing
without causing any label altering effect, adding a
constant to the time series data can be considered as a
new valid sample.

2) Scaling: Changing the magnitude of the data by mul-
tiplying it by a random scalar value.

3) Jittering: Adding minor fluctuations in smooth intervals
to mimic the presence of noise.

III. METHODOLOGY

A. Data preparation

The data was obtained from the Leeds Teaching Hospitals
NHS Trust1 [13] from 87 subjects: 58 patients and 29 healthy
controls. The controls were friends and relatives of the
patients of similar ages, and were only included if they had
no neurological disorder. The subjects were asked to draw
an Archimedean spiral pentagon (see Fig. 1), using an inking
stylus on a pressure-sensitive tablet.

Fig. 1 Pentagon drawing

Each subject performed the drawing four times, two times
with each hand (dominant and non-dominant hand). We refer
to each successful attempt at drawing the figure with a given
hand as an iteration of drawing the figure. We worked with
the first iteration of the pentagon figure drawn using the
dominant hand, as this was the primary subset used in [13],
and our aim was to use the results from this earlier work
as a benchmark to evaluate the performance of our models.
We refer to this particular subset of data as the first set of
figure drawing data. In certain scenarios, we also used the
second iteration of pentagon drawings using the dominant
hand, called the second set of figure drawing data.

The dataset consists of four attributes, namely the xy co-
ordinates, the angles made by the pen, the pressure readings,
and the timestamp for each reading. We implemented a data
cleaning and manipulation step in order to prepare the data
before passing it to the model. The sampling rate was fixed
at 200 Hz, and xy coordinates were rescaled back to the
tablet’s true dimensions (20.3× 32.5cm). The initial dataset
was prepared using the first set of figure drawing data as
described above and split into training and testing such that
the data pertaining to 20% of the subjects was reserved solely
for testing. The rest was used for training. An equal split of
patients and controls was preserved in each set. The training
set was then broken down again, such that a fragment of it
would be used for validation (75% training, 25% validation).

Since the number of controls was significantly lower than
the patients, two approaches boosted the number of control
samples. The first was to append the training dataset with a
sample of control data from the second set of figure drawing
data. The second approach was to use data augmentation

1This study received UK National Regional Ethics Service approval and
local Research and Development approval from Leeds Teaching Hospitals
NHS Trust. All participants had provided informed consent.
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techniques (scaling, jittering and translation) on the control
samples of the training dataset and then append the newly
obtained instances back to the training set. The dataset
obtained from both approaches was passed to the model.

B. LSTM configuration

The LSTM classifier [22] (Fig. 2), selected by an em-
pirical process, consisted of a layer of two LSTMs stacked
consecutively, followed by a dropout layer (0.5 probability),
a flatten layer (20 nodes) and, finally, a sigmoid activation
function. The weights of the network were trained using
backpropagation with Adam optimizer using binary cross-
entropy [23] as the loss function. The learning rate was kept
as 0.005. The validation was done after every three rounds
of training. The process of training and validation used the
full training and validation datasets, and the set of values
reporting a minimum validation loss was chosen for testing.

Fig. 2 Architecture of the LSTM based classifier

During the configuration stage, we analyzed the following
hyperparameters:

• Number of LSTM units in the layer.
• Dimensionality of the output from the LSTM layer,

number of nodes in the dropout and feedforward layers.
• Number of items passed to the model in a single epoch.
• Number of iterations for training and validation.

We ran multiple experiments to determine the ideal values
for each of these. A single experiment involved setting
particular values to the hyperparameters, running the training
and testing modules and recording the performance metrics.
We arbitrarily decided to pass the time series of only the
xy coordinates to the model during configuration. Table I
describes the best set of hyperparameters.

Table I: LSTM Hyperparameters Value
Number of layers 2
Number of nodes 20

Batch size 16

The hidden and cell states were set as tensors, whose shape
depended on the number of layers, nodes, and batch size. We
initialized them randomly from a normal distribution. Each
time the LSTMs were initialized with different hidden and
cell state values, and the overall performance of the model
varied significantly. We re-ran the experiments multiple times
to allow the tracking of the optimum combination of config-
urations using performance metrics. After multiple iterations,

we were able to find a reasonable set of values for the initial
hidden and cell states.

C. ESN configuration

The ESN classifier is based on [24] and [25]. It consists of
a set of input nodes, which pass the input in batches to the
reservoir. The activation of RNN cells is configurable, but
we kept the default tanh activation function. The reservoir is
followed by a layer of output nodes, and the output from this
layer is finally passed through a sigmoid activation function
to limit the output values to the range [0,1]. The weights
between the input nodes and the reservoir and within the
reservoir were fixed at the time of initialization. Training the
ESN involves passing batches of inputs to the model and
then fitting the weights between the reservoir and the output
nodes. The algorithm used for training the output weights
and the related parameters is also configurable. Validation
was done after every three rounds of training.

Fig. 3 Architecture of the ESN based classifier

Similar to the LSTM classifier, we ran multiple experi-
ments to find the ideal configuration. These parameters are:

• The dimensionality of the output from the reservoir, also
defined as the number of features in the hidden state.

• Number of initial timesteps of the reservoir output to be
ignored. In other words, the portion of initial reservoir
output which is not forwarded to the output nodes.

• Regularization parameter for ridge regression.
• Number of layers inside the reservoir.
• Spectral radius: described in Section II.
• The training algorithm to be used.
• The number of training-validation epochs.
In the case of the dimensionality of the output, we ob-

served that the performance of the model initially improved
as the size of the hidden layer approached 30. Beyond 30,
it plateaued until reaching 70, beyond which it degraded. In
the case of lambda, the use of smaller values had no effect
on the performance of the model, while increasing it beyond
a certain threshold caused the performance to degrade. We
decided to set a value of 0.02 for this parameter.

We also observed that setting up the ESN with a washout
of 0.5, hidden dimensionality of 30, and a regularization of
0.02 gave us a near-optimum performance (an F1-score of
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96%). Similarly, decreasing the spectral radius or increasing
it to values very close to 1 caused a decrease in the
performance metrics. In the experiments we conducted, the
model used Cholesky decomposition [26].

IV. RESULTS

A. LSTM Classifier

We initially performed the experiments with the first set
of drawing data. However, the model produced an accuracy
of 0.75, sensitivity of 1 and specificity of 0. In other words,
regardless of the configuration, the model kept classifying
every instance as a patient.

Fig. 4 Mean F1-scores using dominant hand second iteration

Fig. 5 F1-score variance on dominant hand second iteration

As mentioned before, we balanced the dataset in two
ways, by using the second set of figure drawing data and
by applying basic data augmentation techniques. The initial
configuration was determined using only the xy coordinates.
Once the ideal values for all the hyperparameters were deter-
mined, experiments were carried out with other parameters,
including angle, pressure, velocity and acceleration.

Fig. 4 and 5 show that when trained using a time se-
ries that included the pressure and angles, the model had
a high performance (mean F1-score 76%-80%) and high
stability (low variance in F1-score 0.05%-0.09%). Following
this observation, we searched for other combinations that
resulted in better classification performance. We observed
a marginally higher performance when combining pressure

with velocity, angles and angular velocity. In the case of
combining xy coordinates along with pressure, the variance
of the performance metrics decreased sharply. Overall, the
use of pressure by itself provided the best results so far,
with an average F1-score of 0.945 and a variance of 0.04%.

B. ESN Classifier

In the case of ESN, we experimented solely with the
pressure, as we had previously determined from the LSTM
experiments that this information provided the best perfor-
mance. The experiments performed and the metrics observed
were outlined in Section III-C.

Table II: Results from the ESN classifier
Iteration Accuracy F1-Score

1 0.8125 0.8889
2 0.75 0.8333
3 0.9375 0.96
4 0.9375 0.96
5 0.75 0.8333

To evaluate the stability of the ESN, we set the con-
figurations of the ESN (dimensionality=30, lambda=0.02,
washout=0.05, epochs=10, spectral radius=0.9, number of
layers=1, readout=“cholesky“) and ran experiments with the
same datasets five times to see if the performance varied.
Table III summarizes the results from the best configurations
of LSTM and ESN models as well as the findings from [13].

Table III: Comparison of results with [13]
Model Accuracy Sensitivity Specificity F1-Score
CNN 95% 0.95 0.95 0.95

LSTM 91% 1.0 0.65 0.945
ESN 93.7% 1.0 0.75 0.96

C. Comparing training and testing time

In order to evaluate the training and test time of the mod-
els, we measured the time taken to run a single experiment
(fixed number of epochs of training and validation followed
by one round of testing). We fixed the configurations of the
LSTM and ESN (described in the respective configuration
sections). The data and the number of training-validation
epochs were also fixed to a value of 10. The hardware
was kept the same (a single CPU for each of the models).
Fig. 6(a) compares the average running times of both models.
ESN takes significantly less time compared to LSTM, even
when run on a standard CPU machine. Further, we also found
that using GPU processing greatly enhanced the performance
of the LSTM model as reflected in Fig. 6(b).

V. CONCLUSIONS

One of the objectives of this work was to compare the
results obtained using RNN-time series with those gathered
by using CNN-image data [13]. We can see that the CNN
image-based approach is more balanced and does not have
any bias towards any particular label (both sensitivity and
specificity are 0.95). However, we should also note that the
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(a) LSTM and ESN on CPU (b) GPU-CPU for LSTM

Fig. 6 Average running time of LSTM and ESN

work in [13] also included extensive use of data augmenta-
tion techniques. The metrics obtained from LSTM and ESN
classifiers are within a close range of these values. This
points towards the potential of approaching figure drawing
data from a time series perspective. We also observed that
attributes such as pen angles and pressure had a high positive
impact on the classification performance of our models. The
image-based approach did not consider the pen angle, which
could improve their final performance. Additionally, training
a CNN is a very slow process. ESNs could significantly
reduce training time whilst approaching similar accuracies.

The performance metrics collected from the LSTM clas-
sifier had, in many cases, high variance, which imply that
the LSTM models were very sensitive to the hyperparameter
configurations and to the order of the input data during
training and validation. On the other hand, the performance
of the ESN classifier showed relatively less variance, which
shows that it is less sensitive to the order of the input data. In
terms of operational cost, LSTM required GPU accelerated
machines in order to perform at the same level of ESN on
CPU. This means that ESN models are more economical
compared to LSTM. Due to the fact that most of the weights
in the ESN are fixed during initialization has this positive
effect. Learning only occurs in the output weights, which
itself is done using techniques that are computationally less
intensive than backpropagation used in LSTM.

Despite its advantages, the ESN model does suffer from
a major pitfall. Currently (July 2021), there is no official
in-built library support in any of the main frameworks
(PyTorch, TensorFlow, and Keras). On the contrary, the
LSTM is a very popular RNN model and has a ready-to-
use implementation and documentation in most frameworks.
Due to the lack of extensive documentation, the setup of the
ESN classifier was challenging. More community support
and documentation might encourage researchers to use this
particular architecture. Further investigation is also needed in
the hypersensitivity of LSTM models and in finding proper
ways to tune each of the parameters of the ESN model.
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