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Abstract— Annotation of polysomnography (PSG) recordings
for diagnosis of obstructive sleep apnea (OSA) is a standard
procedure but an expensive and time-consuming process for
clinicians. To aid clinicians in this process we present a
data driven unsupervised hierarchical clustering approach for
detection and visual presentation of breathing patterns in PSG
recordings. The aim was to develop a model independent of
manual annotations to detect and visualize respiratory events
related to OSA. 10 recordings from the Sleep Heart Health
Study database were used, and the proposed algorithm was
evaluated based on the manually annotated events for each
recording. The algorithm reached an F1-score of 0.58 across
the 10 recordings when detecting the presence of an event
vs. no event and a 100% correct diagnosis prediction of OSA
when predicting if apnea-hypopnea index (AHI) ≥ 15, which
is a clinically meaningful cut-off. The F1-score may be due to
imprecise placement of events, difficulty distinguishing between
hypopneas and stable breathing, and variations in scoring. In
conclusion the performance can be improved despite the strong
agreement in diagnostics. The method is a proof of concept that
a clustering method can detect and visualize breathing patterns
related to OSA while maintaining a correct diagnosis.

I. INTRODUCTION

Obstructive sleep apnea (OSA) is a disorder with inter-
mittent complete or partial obstruction of the upper airway
during sleep. In most cases the obstruction is caused by
the weight of fatty tissue around the neck, but may also be
caused by individual anatomical features such as a narrow
upper airway, mobility of the tongue or a protracted jaw. It is
estimated that ≥14% of men and ≥5% of women worldwide
suffer from OSA [1]. OSA patients have increased risk of
stroke, heart attack and being in automobile accidents due
to daytime drowsiness and fatigue. The gold standard for
diagnosis of OSA is the apnea-hypopnea index (AHI) which
is derived from annotations made by sleep technicians. The
annotations are made on data from a sleep study in which a
person’s sleep is recorded on a polysomnogram (PSG) [1].

The gold standard may be inadequate for scoring different
types of events i.e. apneas and hypopneas, but it is a good
overall indication of whether an event occurred or not.
Rosenberg et al. [2] found that the inter-scorer agreement of
event vs. no event was 84.4%, but scoring specific types of
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events i.e. obstructive apneas and hypopneas the agreement
scores fell to 77.1% and 65.4%, respectively [2].

We propose an unsupervised, data driven approach to aid
technicians using an automated visual tool to increase con-
sistent scoring. Few studies have used unsupervised learning
on OSA. In [3], the primary goal was to predict mortality
based on clusters from annotated OSA phenotypes and
demographic values. The size of the dataset was therefore
much larger than the data set used in this paper. In [4]
unsupervised learning was used to classify sleep apnea vs.
normal breathing using only ECG. The two papers used
generalized characteristics of OSA from annotations, but did
not investigate breathing patterns for each recording. The
novelty of our paper is that the algorithm is independent of
annotations and that the analysis is patient specific.

II. DATA DESCRIPTION

10 recordings from the Sleep Heart Health Study (SHHS)
[5], [6] were used in this study. The goal of the SHHS was
to test whether sleep disordered breathing is associated with
an increased risk of cardiovascular diseases and mortality
using follow-up studies on patients after their initial visit.
The database consists of 6441 PSG recordings from men and
women aged ≥ 40. The specific recordings used in this study
were 200007, 200009, 200032, 200035, 200038, 200050,
200059, 200070, 200074, and 200078. These recordings
were chosen due to the high number of annotated respiratory
events. The signals used from each recording were nasal air-
flow, oxygen saturation, and heart rate. From the annotations
the scored wake segments were used in the algorithm, and
the annotations of obstructive apneas and hypopneas were
used in the validation process.

III. PRE-PROCESSING

A. Nasal Airflow

The airflow signal (Sair) was standardized in individual
segments of wake and segments of sleep to reduce the
influence of recording anomalies and amplitude variations
related to the recording equipment and placement thereof.
The standardization was done on each segment individually
by subtracting the segment mean and dividing by the segment
standard deviation as shown in Eq. 1.

Sair(x) =
Sair(x)−

∑
xi+1
xi Sair(x)
xi+1−xi

std(Sair(x))
. (1)

Here xi is the starting value of the i’th segment of Sair.
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B. Heart Rate and Oxygen Saturation
The Savitzky Golay (SG) filter [7] works as a low-pass

filter and was used to smooth out high frequency peaks in
the signals. This is important when finding local maxima and
minima of the signals. The advantage of the (SG) filter is that
the filter coefficients are not equal as they are determined
by the polynomial degree. In contrast, the moving average
filter operates with fixed filter coefficients which is rigid in
a setting where the signals vary a lot, such as physiological
signals from a PSG. The SG filter is denoted (SGu,i) where
u is the number of samples used for polynomial estimations
and i is the polynomial order. Both the heart rate (HR) and
oxygen saturation (SaO2) signals were smoothed due to their
rough edges caused by the sampling rate of 1 Hz.

IV. METHODS
We wanted to automatically detect variations in breathing

related to OSA. Thus, we developed an algorithm that utilizes
changes in the envelope of Sair to segment the signal. The
segments were then directly translated to HR and indirectly
to SaO2 via a delay algorithm. Features were extracted from
each segment in all three signals and then utilized in an
agglomerative hierarchical clustering yielding four clusters
and a label for each of the segments. This label could then
be used to compare segments to manually annotated events.

A. Envelope Extraction
The purpose of envelope extraction was to derive overall

changes in breathing inspired by [8]. Cubic spline interpola-
tion (CSI) was used to generate the upper and lower envelope
of Sair. The CSI had starting and end-points (CSIg,h), where
g is the starting index (usually 0) and h is the new length
of the interpolated signal. The envelopes were extracted
by interpolating detected local maxima using CSI0,Q, where
Q is the length of Sair. Subsequently, the envelope was
smoothed twice with a SG filter; first SG301,2 and then
SG201,2. The upper envelope was extracted as described
above, whereas the lower envelope was extracted by flipping
Sair, i.e. changing the sign of the signal, then detecting local
maxima and flipping it back again. The peaks were then used
to generate the envelope.

B. Segmentation
The aim of segmentation was to obtain quasi-stationary

segments of Sair and to use these in a clustering scheme to
locate breathing patterns that are alike. The segmentation was
done using a smoothed combination of the upper and lower
envelope (Envcomb) obtained by adding the upper envelope
and the absolute value of the lower envelope together. The
segment boundaries were found by locating where Envcomb
changes most by finding the maxima of the smoothed deriva-
tive of Envcomb (DEnvcomb) as shown in Eq. 2. The local
maxima were set to be at least 8 samples apart. The start
index value of the segment was defined as a(xs) and the
stop index value was defined as a(xs+1).

DEnvcomb(x) = SG301,2(SG301,2(|
δEnvcomb(x)

δ (x)
|)). (2)

C. Oxygen saturation delay
SaO2 was included as this signal is directly related to

cessation of breathing. The changes in this signal were
thus important to detect OSA. In order to include features
from SaO2, an algorithm was developed to accommodate
for the non-linear delay of SaO2 in relation to Sair f low.
The algorithm calculates the piece-wise linear correlation
between the change in SaO2 and Envcomb using a moving
window (w) with 50% overlap. The change in SaO2 was
defined as the derivative of SaO2 and is given by Eq. 3.

DSaO2(x) = CSI0,K(SG212(
δSaO2(x)

δ (x)
)). (3)

The window size, dependent on signal length, is given by

w =


600, if Q≡ 600 = 0
300, if Q≡ 600 6= 0 and K ≡ 300 = 0
100, otherwise

(4)

The linear correlation was found using discrete linear
convolution (CC(m, l)), where m and l are signals being
correlated. The indices (v) of each window was defined as
v0 = w, v j = v j−1 +

w
2 , j ε [1,2,3, ..., Q

w − 2, Q
w − 1,J = Q

w ],
thus J is the total number of windows. The signals and their
windows were defined as in Eqs. 5a and 5b and the delay of
the j’th window h( j) was calculated as in Eqs. 5c and 5d:

m = DSaO2(q), q ε [v j,v j−1] (5a)
l = Envcomb(q), q ε [v j,v j−1] (5b)

d( j) = |argmax(CC(m, l))−w| (5c)

h( j) =


150, if j = 0
d( j)+d( j−1)

2 , if v j ≡ w = 0
and 80≤ d( j)≤ 500

150+d( j−1)
2 , otherwise

(5d)

All delays across the recording were interpolated (CSI0,Q)
and smoothed with a SG2400,2 filter to a continuous variable
delay (V D). The delay constant (DC), defined in Eq. 6, i.e.
amount each index value a(xs) and a(xs+1) was delayed was
defined as the mean of the V D(x) in segment SegB(xs).

DC(xs) = ∑
xs+1
x = xs V D(x)
xs+1− xs

. (6)

D. Features
Five features were extracted and used in the agglomera-

tive hierarchical clustering using Ward’s Linkage [9]. The
features were chosen due to their physiological relevance
to OSA and through an extensive investigation of various
other features less informative and with low variance. Some
features were dependent on the change and the direction of
change in the signal (Sig(x)) i.e. the sign of the derivative of
the slope of the signal. The sign was calculated as in Eq. 7.

signSig(x)(xs) =
β

∑
x=α

δSig(x)
δ (x)

, x ε [α,β ]. (7)
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1) Saturation change (SatC): The SatC feature was
chosen since it is used by technicians when scoring events
and because pauses in breathing are seen as drops in SaO2.

∆SaO2(x) = max(SaO2(x))−min(SaO2(x)) (8a)

SatC(xs) =

{
∆SaO2(xs), if signsat(xs)(xs)≥ 0
−∆SaO2(xs), if signsat(xs)(xs)< 0

(8b)

x ε [α = O2a(xs),β = O2b(xs)].

2) Envelope change (EnvC): The EnvC was chosen since
it reflects changes in breathing pattern, such as cessation of
breathing after a segment of normal breathing.

∆Envup(xs) = max(Envup(x))−min(Envup(x)) (9a)

EnvC(xs)=

{
∆Envup(ks), if signEnvup(x)(xs)≥ 0
−∆Envup(ks), if signEnvup(x)(xs)< 0

(9b)

x ε [a(ks),b(ks)].

3) Arc length (ArcL): The ArcL of the envelope was
chosen since a normal breathing segment has a flat envelope
and OSA related breathing segments cause changes to the
envelope which change the arc length of the envelope.

Larc(xs) =
∫ xs+1

xs

|
δEnvup(x)

δ (x)
| (10a)

Lsign(xs) =

xs+xs+1
2

∑
x=xs

δEnvup(x)
δ (x)

(10b)

ArcL(xs) =

{
Larc, if Lsign(xs)≥ 0
−Larc, if Lsign(xs)< 0

(10c)

4) Heart Rate Change (HRC): The HRC feature was
chosen since the heart rate is relatively stable during normal
breathing and changes a lot during OSA events.

∆HR(xs) = max(HR(x))−min(HR(x)) (11a)

HRC(xs) =

{
∆HR(xs), if signHR(x)(xs)≥ 0
−∆HR(xs), if signHR(x)(xs)< 0

(11b)

x ε [a(xs),b(xs)].

5) Standard Deviation (AirST D): :
The AirST D feature was chosen because it provides infor-

mation about general amplitude changes in each segment.

AirST D(x) = ST D(SAir(xs)), x ε [a(xs),b(xs)]. (12)

E. Agglomerative Hierarchical Clustering

The goal of clustering the segments in an unsupervised,
data-driven manner was to find breathing patterns that were
alike without human intervention. All features extracted from
each segment were stored in an M×N matrix, M being the
number of segments and N the number of features. Prior
to clustering, all features were standardized. The agglomer-
ative hierarchical clustering (AHC) was set to generate four
clusters using Ward’s Linkage. Ward’s Linkage was cho-
sen because it, through visual inspection, performed better
at clustering physiological relevant segments than linkage
measures such as single, complete and average linkage.
The label vector generated by the clustering was used to
visualize the clustering and to check for acceptable cluster
separation. Cluster separation inspection was done using
Principal Component Analysis (PCA) [10].

To get meaningful results each recording was subject
to visual inspection as the most separated clusters in the
PCA were deemed apnea or recovery breathing, while the
clusters in the middle were either hypopnea or (relatively)
normal breathing. In order to asses this the labels were
used to color the segments of the recording to visually
inspect each cluster. After the four clusters had been assigned
either "apnea", "hypopnea", "normal" or "recovery", the
segments with their corresponding labels were compared to
the manually annotated events. The "normal" and "recovery"
clusters were combined to the predicted "No Event"-class in
the classification.

F. Cluster and Annotation Comparison

The clustering of each segment was compared to the
annotations by finding the segments which were overlapped
by the manually scored annotations. If an annotation was
overlapping more than one segment, the segment with most
overlap was automatically chosen.

G. Prediction of AHI

As an indicator of how well the clustering performed
for diagnostic purposes, a prediction scheme was made. It
counted all segments with a 25% amplitude drop in the
upper envelope. The amplitude drop was calculated as the
minimum value of the segment divided by the maximum
value of the previous segment as shown in Eq. 13. If the ratio
between the two values was 0.75 or less and SatC(xs) was
negative the SatC(xs) value was also stored. When comparing
the AHI of the recording all the annotations that were placed
within segments also scored as "wake" were not counted.
This was because no segments within "wake" periods were
used in the clustering. The criteria of having an AHI ≥ 15
was used to determine if a person had sleep apnea. Thus, the
actual AHI value was only regarded in relation to AHI ≥ 15
→ sleep apnea, or AHI < 15 → no sleep apnea.

drop =
min(Envup(xs))

max(Envup(xs−1))
. (13)
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H. Performance Metrics

The F1-score was the primary performance metric in this
study along with the sensitivity and specificity. These metrics
were derived using the true positive (TP) values, the true
negative values (TN), the false positive values (FP) and the
false negative values (FN).

V. RESULTS AND DISCUSSION
In Table I the accuracy, sensitivity, specificity and F1-

score of the three-class problem is shown. The algorithm
best predicts the No Event-class. While apneas have a high
accuracy and specificity, the sensitivity and F1-score is low
making the predictions unreliable. Hypopnea predictions are
worse, which may be explained by an overlap of the two
classes, where the phenotypes of apneas and hypopneas
in some instances resemble each other. The apnea and
hypopnea clusters are separated, but closely related which
may explain the misclassification. This may also explain
why the two-class prediction is better. The results of the
two-class prediction is shown in table II. When combining
apneas and hypopneas into the Event-class the accuracy is
64%, but the sensitivity increases to 74% and the F1-score
is 0.58. The high sensitivity shows that the probability of
predicting an event is high when there is an event. This is
important when evaluating the reliability of the algorithm.
This behavior was also shown by Rosenberg et al. [2] as the
inter-scorer agreement of event vs. no event was higher than
that of the specific class. The inter-scorer agreement of event
vs. no event was 84.4% and the inter-scorer agreement on
apneas and hypopneas were 77.1% and 65.4%, respectively.
For apneas, 14.4% were scored as hypopneas, and for hy-
popneas, 16.4% were scored as no event and 14.8% scored
as obstructive apneas which also suggests that a two-class
classification is better [2].

The validation through comparison poses a paradoxical
problem, as the proposed method of detecting breathing
patterns tries to avoid and challenge manually annotated
events because of the low agreement between technicians.
But the best way to validate the results is through comparison
to the gold standard which is the method of manually
annotated events, and thus the best performance standard.
Due to the paradoxical nature of comparing the clustering to
manually annotated events and to evaluate if diagnosis would
be the same, the AHI prediction scheme was made. The AHI
scheme predicts the same diagnosis in all 10 recordings when
using only the changes in amplitude of the nasal airflow
signal. Note, that the previous rules, by which the SHHS
database was scored, did not include either desaturations or
arousals as a requirement for scoring hypopneas, but focused
mainly on the amplitude changes of the nasal airflow signal
[6]. This may explain why the AHI prediction is the same
when using only the envelope. As shown in table III it may
also explain why the prediction becomes gradually worse
as the oxygen saturation becomes a requirement because the
oxygen saturation makes the scoring requirement more strict,
and thus less events are scored with a stricter requirement,
resulting in a lower AHI. Another factor to explain the

TABLE I
THREE-CLASS: APNEA VS. HYPOPNEA VS. NO EVENT

Apnea
Accuracy Sensitivity Specificity F1-score
0.85 0.51 0.89 0.42

Hypopnea
Accuracy Sensitivity Specificity F1-score
0.61 0.44 0.65 0.34

No event
Accuracy Sensitivity Specificity F1-score
0.64 0.59 0.74 0.69

TABLE II
TWO-CLASS: HYPOPNEA AND APNEA VS. NO EVENT

Hypopnea + Apnea
Accuracy Sensitivity Specificity F1-score
0.64 0.74 0.59 0.58

gradually lower prediction rate is the oxygen saturation
time delay. It has previously been shown that prediction
of apneas and hypopneas from the oxygen saturation alone
is plausible [12]. Therefore, a slightly wrong delay may
have a significant impact on the segment boundaries for the
oxygen saturation and thus the actual change found by the
algorithm possibly leading to discrepancies during clustering.
Finding the correct time delay was a significant hurdle, and
something that could be revisited in future work, perhaps
drawing inspiration from [14]. This is especially important
when testing the algorithm on other cohorts scored by the
current rules of the AASM since these require a 3% oxygen
saturation drop or an arousal for scoring hypopneas [13]. It
has to be noted that the results are from a data driven model
with no training. The results are what the algorithm displays
without human intervention. This is especially important
when evaluating the results since the results reflect what the
algorithm has found from the features. The features used in
the study utilize different physiological signals to generate
the clustering. When scoring sleep apnea, arousals play a
role in detection of sleep apnea. Arousals have been used in
the clustering indirectly through the change in heart rate as
it is shown that heart rate and arousal intensity are highly
correlated [11].

The features used in the study could be revisited in future
work to increase performance. To make the method fully
automatic, a wake stage detector should be implemented.
The current method relies on the wake segments from the
annotation sheet. This should be revisited in future studies.
Data quality plays an important role when running the algo-
rithm, and poor data quality is also subject to poor algorithm
performance. For a data driven model to be completely
reliable the data used must also be of good quality.

TABLE III
AHI PREDICTION

AHI ≥ 15
Recordings E 0.5% 1% 2% 3%
10 10 9 7 4 2
Correct 100% 90% 70% 40% 20%
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Fig. 1. Top: The nasal airflow signal with coloring according to which cluster each segment belongs to using the proposed hierarchical clustering. The
ordinate axis is in arbitrary units due the preprocessing of the signal. The dark blue parts of the signal are annotated wake periods. The deep blue lines
at the top are segment boundaries found by the segmentation algorithm. Bottom: The oxygen saturation signal. The blue parts of the signal are annotated
wake periods. The signal segments are colored according to the corresponding segment in the above plot of the nasal airflow. Note the segments are slightly
shifted due to the oxygen saturation delay. Right: The clustering plotted against two features (Envelope change (EnvC) and saturation change (SatC)).

Using another envelope-based method like [8] could per-
haps increase performance with removal of artifact, but can-
not make up for noise and poor data quality due to equipment
that has shifted during the night. The recordings used in the
study contains a high number of respiratory events. This was
a deliberate decision because the clustering also performs
best with high variance in the data. To generalize the findings
from this study the algorithm should be tested on more
recordings from different cohorts to verify the findings in
this study.

VI. CONCLUSIONS

The goal of this paper was to develop an algorithm to assist
technicians with consistent scoring. The performance of the
algorithm was best when regarding event versus no event
with an accuracy of 64%, sensitivity of 74%, specificity of
59% and an F1-score of 0.58. Accuracy of predicting AHI ≥
15 was 100% when using only the envelope to score events,
and falling linearly when a drop in oxygen saturation became
a requirement. The algorithm can be improved, but serves as
a proof of concept that a data driven model can be used to
detect and visualize breathing patterns in PSG recordings
to aid technicians with annotations, which in turn helps
clinicians derive better diagnoses for sleep apnea patients.
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