
  

 

Abstract— The lack of an integral characterization of chronic 

neuropathic pain (NP) has led to pharmacotherapy 

mismanagement and has hindered advances in clinical trials. In 

this study, we attempted to identify chronic NP by fusing 

psychometric (based on the Brief Inventory of Pain – BIP), and 

both linear and non-linear electroencephalographic (EEG) 

features. For this purpose, 35 chronic NP patients were recruited 

voluntarily. All the volunteers answered the BIP; and 

additionally, 22 EEG channels positioned in accordance with the 

10/20 international system were registered for 10 minutes at 

resting state: 5 minutes with eyes open and 5 minutes with eyes 

closed.  EEG Signals were sampled at 250 Hz within a bandwidth 

between 0.1 and 100 Hz. As linear features, absolute band power 

was obtained per clinical frequency band: delta (0.1~4 Hz), theta 

(4~8 Hz), alpha (8~12 Hz), beta (12~30 Hz) and gamma (30~100 

Hz); considering five regions: prefrontal, frontal, central, 

parietal and occipital. As non-linear features, approximate 

entropy was calculated per channel and per clinical frequency 

band with addition of the broadband (0.1~100 Hz). Resulting 

feature vectors were grouped in line with the BIP outcome. 

Three groups were considered: low, moderate, and high pain. 

Finally, BIP-EEG patterns were classified in those three classes, 

achieving 96% accuracy. This result improves a previous work 

of a SVM classifier that used exclusively linear EEG features and 

showed an accuracy between 87% and 90% per class to predict 

central NP after spinal cord injury. 

I. INTRODUCTION 

Currently, the management of chronic neuropathic pain 

(NP) remains a challenge. The reason is poor characterization 

[1], because it is based almost exclusively on the subjective 

perception of the patient, given through written or verbal 

reports. This has hindered an accurate clinical management of 

NP patients [2]. The International Association for the Study of 

Pain defines NP as “pain arising as a direct consequence of a 

lesion or disease affecting the somatosensory system” [3]. 

When NP lasts over three months, it becomes chronic, and 

neurons from the central nervous system (CNS) respond with 

neuroplastic changes. However, the CNS will respond and 

evolve to NP differently in view of genetic, environmental, 

emotional or cognitive factors [4]. Chronic NP is a worldwide 

public health issue, affecting 7-10% of the adult population, 

wherefrom 6% are infants, and 35% are oncological patients 

[5]. In pediatric patients, NP management and characterization 

becomes even more challenging because verbalization is 

limited [6]. Seventy physicians were interviewed from public 

and private care units across Mexico [7], which has 

approximately 4.5 million individuals with chronic NP. As a 

result, they found that first-line treatments were heterogeneous 

and unstandardized. In a recent study undertaken in Germany, 

57% of the total patients with chronic pain had NP, but only 

18% of those patients received adequate pain treatment in 

terms of dosage or number of pharmacological agents used [8]. 

Moreover, only 40-60% of patients have obtained sufficient 

pain relief with medications given in combination or alone; 

including the universal used pregabalin and gabapentin are 

ineffective for most patients with NP [9]. Recent NP 

pharmacological clinical trials have failed to provide efficacy, 

even when they have increased, owing to the lack of proper 

characterization and stratification of NP [10]. However, NP is 

not only an abstract perception, but an electrophysiological 

signal modulated by neurotransmitters and synapses, which 

can be quantified and interpreted. To quantify NP, it then 

seems necessary to consider both psychometric testing (the 

patient report) and electrophysiological measurement 

(neuronal plastic changes of the electrical activity of the CNS). 

In the light of the above discussion, the aim of the present work 

is to investigate if NP is identified by patients’ reports 

collected by applying the Brief Inventory of Pain (BIP), along 

with the analysis of the electroencephalographic (EEG) 

activity to identify their level of pain. To our knowledge, only 

one study [11] has classified NP based on EEG features. In 

[11], EEG band power in eyes open (EO) and eyes closed (EC) 

condition were used as features, and a support vector machine 

(SVM) as classifier. Their pattern recognition proposal 

achieved 87-90% of classification accuracy. Our hypothesis is 

that including non-linear EEG features can increase classifier 

performance due to the better characterization of 

neurophysiological attributes of NP, and having in mind that 

disease identification  in clinical applications should be closer 

to 100% [11].  

In this study, approximate entropy (ApEn) was used as the 
measure of non-linearity for its clinical applications 
concerning biological signals. The development of ApEn was 
motivated by data length and noise constraints commonly 
encountered in heart rate, EEG, and endocrine hormone 
secretion data sets [12]. Thus, ApEn is relatively unaltered by 
noise, it is finite for stochastic, composite and noisy 
deterministic processes [13], and it detects changes in 
subjacent episodic behavior undetected by peak amplitudes 
[14]. Recently, EEG signals analyzed with ApEn have 
effectively predicted between control and neuropathological 
conditions, such as: depression [15] and epilepsy [16]. On this 
evidence, this investigation sought to improve the 
identification of NP severity by including non-linear EEG 
features using ApEn, in previous tested pattern recognition 
proposal [11] based on linear features and linear classifiers.   

II. METHODS 

A. Sample 

The sample size was calculated considering the mean 
individual alpha frequency of healthy individuals (p0=10 Hz 
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[17]), and that of NP individuals (p1 = 9.5 Hz [13]), with a 
standard deviation of 1. A two-tailed normal distribution (z) 
with an alpha significance level of 0.05 and a power between 
0.8 and 0.9 was selected, resulting in a sample size between 32 
and 43 patients. Therefore, 35 chronic NP patients (8 men and 
27 women) with a mean age of 44 ±13.98 were recruited for 
this study. None of those reported a severe mental disease, 
neurological disorder (beside NP), previous head trauma, 
cerebral infarct, or CNS tumor.  To be eligible for the study, 
all participants completed the Pain Detect questionnaire. 
Noneligible patients were all of those who obtained a score 
less than 12 (in a range between 0 and 38). The questionnaire 
outcome was confirmed by the clinical history of the patient. 
Patients were asked to list their medications taken in the last 
24 hours before the EEG recording. Twelve patients (n=12) 
were not taking any type of medication, eighteen patients 
(n=18) were taking centrally acting drugs for over a year, two 
patients (n=2) were on cannabidiol derivatives, and three (n=3) 
took nonsteroidal anti-inflammatory drugs for pain attacks. 
The effects of centrally acting drugs have been proved to be of 
secondary relevance since there were no differences found in 
the global power of NP patients with or without central acting 
medications [18]. The causes for NP in the studied population 
were spinal cord injury (31%), peripheral neuropathy (23%), 
diabetes (17%), trigeminal neuralgia (9%), CNS disorder 
(6%), and other (14%). All patients signed a written informed 
consent according to the world medical association declaration 
of Helsinki and were granted monetary remuneration. This 
study was approved by the Clinical Investigation Ethics 
Committee of TecSalud with the following number: P000369-
DN-RespElectro-CI-CR005.  

B. Questionnaire-based Monitoring 

Two questionnaires were applied: (a) Pain Detect, and (b) 
BIP. The first was chosen to confirm the presence of NP and 
was applied before the recording session, whereas BIP was 
applied at the beginning of the EEG recording session. BIP 
quantified the level of pain and identified the interference level 
in daily activities according to individual experiences of pain. 

C. EEG Recordings 

Ten minutes of spontaneous EEG recording were acquired 
using 22 electrodes positioned according to the standard 10/20 
international system. The amplifier in use was the Smarting 
mBrain. OpenViBe software was used to implement the 
experimental paradigm and record the EEG signals. The 
sampling frequency was 250 Hz, and the bandwidth was 
between 0.1 and 100 Hz. Electrode impedances were kept 
below 5 kΩ. Right and left mastoid electrodes were used as 
references and Cz as the ground electrode. Patients sat in an 
upright position. The first 5 minutes, they were asked to keep 
their eyes opened and fixed on a white cross in a dark 
background of a monitor 50 cm away. At the end of the first 5 
minutes, the cross disappeared, and patients closed their eyes 
for the last 5 minutes until a beep marked the end of the 
recording.  

D. Signal Analysis  

Signal Preprocessing. EEG raw signals were 

preprocessed using EEGLAB toolbox (v.19.1.1) of 

MATLAB (R2020a) software. Signals were filtered first by a 

6th order Butterworth high-pass filter with a cut-off frequency 

set at 0.1 Hz to remove very low frequency artifacts. Then, 

transitory artifacts were rejected using the Artifact Subspace 

Reconstruction [19]. After that, muscular, ocular, cardiac, line 

noise, or channel noise artifacts were removed by 

Independent Component Analysis supported by ICLabel [20].  

Feature Extraction. To estimate the level of neuronal 

oscillations, a linear and non-linear method were applied to 1-

min segments (60s x 250 Hz, N=15000) of the recorded 10-

min signals. First, segments were filtered into the five clinical 

frequency bands and the broadband. Six filters were designed 

for ApEn, whereas only five were used for power. The filters 

were 8th order bandpass filters with the lower and higher 

frequency of each band specified as follows.  On one hand, 

ApEn was calculated for the 22 electrodes and for six 

frequency bands: delta (0.1~4 Hz), theta (4~8 Hz), alpha 

(8~12 Hz), beta (12~30 Hz), gamma (30~100 Hz) and broad 

band (BW) (0.1~100 Hz). On the other hand, absolute band 

power was calculated for five bands (delta, theta, alpha, beta, 

and gamma) and for the following five regions, averaging the 

EEG electrodes over each region: prefrontal (AFz, Fp1, Fp2), 

frontal (F7, F3, Fz, F4, F8), central (T7, T8, C3, C4, Cz, CPz), 

parietal (P7, P3, Pz, P4, P8), and occipital (POz, O1, O2).  

Absolute band power was calculated to estimate the level 

of neuronal synchrony according to (1), 

𝑦[𝑛] =
1

𝑁
∑ 𝑥𝑖

2[𝑛]𝑁
𝑖=1        

where n is each data point of N (the 1-min segment, N=15000) 

and x is the amplitude value of the filtered signal.  ApEn was 

obtained to measure the regularity of a non-linear time series 

with the Predictive Maintenance Toolbox [21]. ApEn 

measures the likelihood that runs of patterns that are close of 

m observations remain close on next incremental 

comparisons. Thus, two input parameters are needed: the 

pattern length m, and similarity criterion r that is used to 

identify the meaningful range in which fluctuations in data are 

similar [22]. Thus, the ApEn was calculated as 𝑎𝑝𝑝𝑟𝑜𝑥𝐸𝑛𝑡 =
𝜙𝑚 − 𝜙𝑚+1 in line with (2), 

𝜙𝑚 = (𝑁 −𝑚 + 1)−1∑ log(𝑁𝑖)
𝑁−𝑚+1
𝑖=1    (2) 

The parameter m is obtained by reconstructing the phase-

space. This is done by delay-coordinate embedding in a 

higher dimensional space for the uniformly sampled 

univariate time signal. Hence, the time series is reconstructed 

according to (3) [23],  

𝑋1,𝑖
𝑟 = (𝑋1,𝑖 , 𝑋2,𝑖 , …𝑋1,𝑖+(𝑚1−1)𝜏1), 𝑖 = 1, 2,… , 𝑁 − (𝑚1 − 1)𝜏1  (3) 

where X is the 1-min segment, N is the length of the time 

series (600s*250 Hz), 𝜏1 is the delay (i.e., lag) for embedding, 

and 𝑚1 is the embedding dimension for 𝑋1. To compute the 

delay for reconstruction, the delay is set to the first local 

minimum of AMI. AMI is computed as (4) [23], 

𝐴𝑀𝐼(𝑇) =∑ 𝑝(𝑥𝑖 , 𝑥𝑖+𝑇)𝑙𝑜𝑔2 [
𝑝(𝑥𝑖,𝑥𝑖+𝑇)

𝑝(𝑥𝑖)𝑝(𝑥𝑖+𝑇)
]

𝑁

𝑖=1
   (4) 

where N=15000 the length of the segment, and T=1: MaxLag. 

The resulting delay differed depending on the subject or 

condition. Computing the delay in this manner (i.e., per 

segment), ensured that successive components of the 

reconstructed state vectors were neither redundant or 

uncorrelated [24]. The embedding dimension was estimated 

using the False Nearest Neighbor (FNN) algorithm [25]. For 

a point i at dimension d, the points X𝑖
𝑟  and its nearest point 
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X𝑖
𝑟∗  in the reconstructed phase space {X𝑖

𝑟∗ }, 𝑖 = 1:𝑁, are false 

neighbors if (5), 

√𝑅𝑖
2(d+1)−𝑅𝑖

2(d)

𝑅𝑖
2(d)

> 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑    (5) 

where 𝑅𝑖
2(d) =∥ X𝑖

𝑟 − X𝑖
𝑟∗ ∥2 is the distance metric. When 

results were computed, dimension was m=3 for all NP 

patients in EO and EC, which agrees with the theoretical 

implications of [26]. Previous references [24], held that EO 

had an increased dimension than EC, but it wasn’t the case for 

this study. The reason for dividing the 10-min segments in 1-

min segments, was done according to [27] which states that 

the optimal number to estimate m depends on the data points 

per segment, which should range between 10𝑚 and 30𝑚.  The 

number of within range points at point i was calculated by (6),  

𝑁𝑖 =∑ 1(∥𝑁
𝑖=1,𝑖≠𝑘 𝑌𝑖 − 𝑌𝑘 ∥∞< 𝑅)    (6) 

where one is the indicator function, and R is the radius of 

similarity (i.e., r, the similarity criterion), r was calculated as 

0.2*variance(X), where X is the 1-min segment of a specific 

channel and subject in either EC or EO. These values have 

been demonstrated to produce good statistical reproducibility 

for time series of length N > 60 [28]. Normalizing r with this 

approach gives ApEn a scale invariance, so it is not altered by 

uniform processes of magnification, reduction, or constant 

shifting to higher or lower values [13]. As a result, 157 

features ([22 electrodes × 6 bands] + [5 regions × 5 bands]) 

were extracted, yielding 350 observations (35 patients × 10 

EEG segments). The dimensionality of the resulting feature 

vector was 157. Finally, data were normalized in z-score with 

center 0 and a standard deviation of 1. 

Classification. The feature vectors were labelled 

according to the severity of the actual pain reported in the BIP. 

Three classes were considered: (a) low pain = 0 – 3, (b) 

moderate pain = 4 – 6, and (c) high pain = 7 – 10. For feature 

selection, the number of features for power was reduced in the 

preprocessing stage by averaging the 22 electrodes across 

regions based on the relevance that certain brain regions have 

on the mechanisms of neuronal oscillations. Also, feature 

selection was incorporated in the classifier itself during the 

training phase using the kernel functions. As classifier, a SVM 

with a quadratic kernel function was selected. To classify the 

three classes, one versus one was used as multiclass method. 

To validate the performance of the model, a cross-validation of 

5-Fold (k=5) was implemented. Data were divided into 5 

randomly chosen folds of roughly equal size. One subset was 

used to validate the model trained using the remaining subsets. 

This process was repeated 5 times such that each subset was 

used exactly once for validation. The average error across all 

the 5 partitions was reported as ε.  

E. Statistical Validation 

After proving normality with Shapiro test, a one-way 
ANOVA test was carried out in R (version 1.2.5033) to test if 
the differences between group means were statistically 
significant. Pain severity (low, moderate, and high) was 
considered the factor variable. Afterwards, a Tukey test was 
performed to test the significance between all pairs of means 

III. RESULTS AND DISCUSSION 

To give an insight into the EEG characterization of NP 

based on linear (absolute band power) and non-linear (ApEn) 

features, the two most differentiable features among the three 

classes are presented. These tendencies can help us explain 

the trends of the abnormal increased neuronal 

synchrony/irregularity expected from plastic changes owing 

to the different NP severity levels. The first five ranked 

features for the classification of NP severities are shown in 

Fig. 1.  

 

Figure 1. Predictor importance scores of the first five ranked features of the 
classifier using the minimum redundancy maximum relevance algorithm 

[29]. 

A. The most differentiable feature: Beta Band Power 

The most differentiable feature among the classes was 

beta band power over the frontal region. This finding is in line 

with the findings of [11], where beta band features provided 

the best separability for the group of chronic NP from three 

other groups ((1) controls, (2) patients that developed NP 

within six months of EEG recording, and (3) patients that did 

not develop NP within six months of EEG recording) from a 

sample of 31 subacute spinal cord injury patients. Besides, 

other studies have reported increased beta oscillations in 

frontal brain areas and centro-parietal regions which correlate 

positively with the pain matrix [18], [30]. In this study, 

throughout all levels of pain in the EC condition, there was an 

increased power located in the central region (T7, T8, C3, C4, 

Cz, CPz), which also supports the findings related to the pain 

matrix as mentioned above. Furthermore, beta has been 

recognized as a characteristic oscillation in chronic pain, 

because it provides prediction signals via descending 

feedback connections, which hold the theory that chronic pain 

arises from prediction errors rather than nociceptive input 

[31]. For the beta band, the lowest power (-0.631) was reached 

in the parietal region for the EO condition in the low pain 

group. The highest power (0.732) was found in the parietal 

region of beta band for the EC condition in the high pain 

group. Enhanced attention to the inward perception of pain is 

probably responsible for this increased power since attention 

boosts the prediction error [32]. When patients open their eyes, 

the attention is withdrawn from the interior pain percept to 

outward stimuli.  

B. The second most differentiable feature: Approximate 

Entropy 

The second most differentiable feature among the classes 
was ApEn in the BW (0.1 – 100Hz) for the Fz electrode (see 
Fig. 5 for feature distribution in this electrode). In Fig. 2, the 
average ApEn across the 35 participants in the 22 channels is 
presented.  
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Figure. 2. Average ApEn of the 35 participants stratified according to the 

severity of their pain. Note that values are normalized in line with a z-score 

scale. 
 

It could be proposed that absolute band power is inversely 
proportional to ApEn since band power increases when the 
level of synchronized neuronal activity increases as well. In 
contrast, ApEn decreases when the regularity of EEG signals 
increases, that is, the neuronal synchronicity. As a result, in the 
BW, ApEn reached the highest value in moderate pain for the 
AFz electrode in EO condition (ApEn = 0.586), and the lowest 
value for the low pain group with EC condition in F3 electrode 
(ApEn=-0.86). By inspecting Fig. 2, it seems that the 
irregularity of neuronal activity moves from posterior to 
frontal brain areas as pain increases. This argument may be 
sustained by the two opposing roles of the prefrontal cortex in 
pain: (a) the location where top-down processing modulates 
pain in the dorsal horn to the CNS, and (b) the area where 
induction of pain chronicity occurs [33]. Also, the prefrontal 
cortex is related to the proper psychological and physical 
therapeutic management of chronic pain given its close 
relationship to emotional processing and executive behavior 
[34]. For moderate pain, there is an overall increased ApEn in 
most parietal, central and frontal electrodes, with the highest 
ApEn localized between the frontal and central electrodes. 
This generalized enhanced ApEn may be attributed to the 
different processing centers when NP is not at its highest, 
given that observed changes in EEG power in NP may also be 
widespread and correspond to multiple changes in an 
interconnected network of somatosensory, limbic and 
associative structures [35]. The increased irregularity for the 
occipital lobe in low pain may be due to the suppression of 
resting state occipital alpha-rhythm, which occurs in NP [36].  

C.  Differentiation among NP severity levels: Classification 

outcomes 

 In Fig. 3, the resulting confusion matrix of the 3-classes 

SVM-based classification is presented. As can be seen, the 3 

levels of NP severities were identified at least in a 93% and 

misclassified at most 6%. In Fig. 4, accuracy, sensitivity, 

specificity, precision, and F-score for each class are also 

displayed. These results reached a classification accuracy of 

96% for moderate and high pain and 97% for low pain, 

improving the results shown in [11], where researchers 

reported an accuracy between 87% and 90% per class to 

predict central NP after spinal cord injury.  

 

A B 

Figure 3. Positive predicted values (PPV) and false discovery rates (FDR) of 

the SVM confusion matrix. (B) True positive rates (TPR) and false negative 

rates (FNR) of the SVM confusion matrix. 
 

  

 

Figure 4. Classifier scores for each level of NP severity. Moderate and high 
pain reached 96% accuracy and 97% specificity. Low pain reached 97% 

accuracy and 98% specificity. 

D.  Statistical Comparison 

 The fusion of linear and non-linear features to characterize 

the level of NP severity showed to be significantly different, 

having applied the one-way ANOVA test (p<2e-16) and the 

Tuckey test for every pair of groups (p< 0.001). In particular, 

the distribution of the most differentiable non-linear feature 

among the three classes (ApEn at Fz electrode within the BW 

(0.1~100 Hz)) is presented in Fig. 5. As can been seen, the 

three levels of NP severity show distinguishable distribution.  

 

 
Figure 5.  Distribution of the most differentiable non-linear feature coming 

from Fz electrode within the BW. Y-axis represents the feature values in this 
electrode and frequency band normalized in the z-score scale. 

IV. CONCLUSION 

The aim of the present work was to investigate whether 

the level of NP severity could be differentiable by patients’ 

report (BIP) along with the analysis of linear and non-linear 

EEG features (absolute band power and ApEn). By using a 

SVM classifier, a classification accuracy of 96% was reached, 

improving the accuracy reported in [11]. Our results show that 

ApEn is an attribute that effectively characterizes the different 

levels of chronic NP. For future work, the generalization of 

the method is desired. For that purpose, a larger sample is 

necessary, including both genders, a wider range of ages, and 

diverse clinical histories. The limitations of the study include: 
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(1) the relatively small sample size, (2) the fact that other 

cognitive processes are occurring in the brain besides NP, and 

(3) even with cross-validation, there is a possibility of 

overfitting from the SVM whenever exposed to unseen data. 

Thus, this model needs to be tested with new patient data to 

assure that there is no overfitting. To improve the proposed 

classifier other methods for feature reduction in the 

preprocessing stage could be implemented, such as: removing 

features with near-zero variance or removing significantly 

correlated features. 
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