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Abstract—Lung cancer is the deadliest form of cancer,
accounting for 20% of total cancer deaths. It represents a
group of histologically and molecularly heterogeneous diseases
even within the same histological subtype. Moreover, accurate
histological subtype diagnosis influences the specific subtype’s
target genes, which will help define the treatment plan to target
those genes in therapy. Deep learning (DL) models seem to set
the benchmarks for the tasks of cancer prediction and subtype
classification when using gene expression data; however, these
methods do not provide interpretability, which is great concern
from the perspective of cancer biology since the identification
of the cancer driver genes in an individual provides essential
information for treatment and prognosis. In this work, we
identify some limitations of previous work that showed efforts to
build algorithms to extract feature weights from DL models, and
we propose using tree-based learning algorithms that address
these limitations. Preliminary results show that our methods
outperform those of related research while providing model
interpretability.

Clinical Relevance: The machine learning methods used in
this work are interpretable and provide biological insight. Two
sets of genes were extracted: a set that differentiates normal
tissue from cancerous tissue (cancer prediction), and a set of
genes that distinguishes LUAD from LUSC samples (subtype
classification).

I. INTRODUCTION

Cancer is a genetic disease caused by changes to genes
that control the way cells operate, especially how they grow
and divide. According to the European Lung Foundation
(ELF), lung cancer is the largest cancer killer in Europe,
accounting for approximately 20% of total cancer deaths [1].
Lung cancer is categorized into two main histological groups:
small cell lung cancer (SCLC) and non-small cell lung
cancer (NSCLC). NSCLCs are generally subcategorized into
adenocarcinoma (LUAD), squamous cell carcinoma (LUSC),
and large cell carcinoma (LCC). Accumulating evidence
suggests that lung cancer represents a group of histologically
and molecularly heterogeneous diseases even within the
same histological subtype [2]. Cancer prediction relates to
differentiating cancerous tissue from normal tissue, whereas
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histologic subtype classification differentiates groups within
the same type of cancer, based on certain characteristics of
the cancer cells. An early diagnosis of cancer is essential for a
good prognosis, and accurate histological subtype diagnosis
influences the target genes for the specific subtype, which
helps defining the treatment plan that can target those genes
in therapy.

RNA-sequencing (RNA-seq) is a technique that can exam-
ine the quantity and sequences of ribonucleic acid (RNA) in a
sample using next-generation sequencing (NGS). It analyzes
the transcriptome of gene expression patterns encoded within
RNA [3]. RNA-seq tells us which genes are turned on in a
cell, what their level of expression is, and at what times they
are activated or shut off [4], which can enable towards a
deeper understanding of molecular changes that might lead
to disease. In Xiao et al. [5], the authors used a multi-model
deep learning (DL) based ensemble strategy to distinguish
between cancer and non-cancerous samples for stomach
adenocarcinoma (STAD), breast invasive carcinoma (BRCA)
and LUAD. The best performing model was decision trees
(DT) with an accuracy of 0.968±0.023, and the ensemble
model provided a boost in accuracy to 0.988±0.018 for the
LUAD dataset. In Ahn et al. [6], the authors use a six hidden-
layer deep feed-forward network for cancer prediction using
gene expression data for 24 different cancer types. The DNN
showed an overall accuracy of 0.979, and an algorithm to
calculate the individual gene contribution was designed as an
effort to provide interpretability on the DNN classifier. The
algorithm used to extract feature weights from the DNN bases
itself on feature selection techniques, inputting a range of ex-
pression values of a gene of interest for the given sample and
observing the change in the DNN outcome [6] so that a single
weight of gene contribution to the output can be calculated. In
De Guia et al. [7], a convolutional neural network (CNN) was
built to classify subtypes of 33 cohorts of cancer types using
multiclass label classification. The proposed model achieved
an overall accuracy of 0.957, and accuracy of 0.950 and 0.910
for the LUAD and LUSC classes, respectively. In Ye et al. [8],
the authors use unsupervised learning techniques to identify
gene signatures for accurate NSCLC subtype classification.
A set of 17 genes was isolated, and multiple classifiers were
used for prediction, DTs performed best with an accuracy of
0.922.

In general, previous works show us that DL models are
prime candidates for the tasks of cancer classification and
subtype prediction, and although efforts have been made
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to provide interpretability from the DL learners, we can
pinpoint two downfalls of previous approaches: first, the
DNN’s performed better when performing feature selection
a priori using variance selection techniques, which might
leave out important genes that are not selected by variance
or other techniques; secondly, the algorithm used to extract
weights from the network bases itself on leave one out
technique, that might fail to capture correlations between
variables post feature selection. In this work, we use a model
that requires no a priori feature selection so that all features
are considered as input to the model. The proposed work
aims to provide a method for cancer prediction and subtype
classification, which outperforms state-of-the-art DL methods
while providing interpretability, which is a great concern
from a pathologist’s perspective since identifying the cancer
driver genes in an individual provides essential information
for treatment and prognosis.

II. MATERIALS AND METHODS

A. Dataset

Using R BioConductor framework with the TCGABi-
olinks package, we queried for gene expression quantification
(RNA-seq) data from The Cancer Genome Atlas (TCGA)
project. The data was retrieved from the Genomic Data
Commons (GDC) legacy database and entailed tier 3 post-
normalized data of the GDC workflow. We queried for tissue
types primary solid tumour (TP) and solid tissue normal
(NT) for the LUAD and LUSC projects. Using GDCprepare,
we proceed to add clinical information for the patients and
remove duplicate patient records. A total of 598 LUAD
and 553 LUSC samples were retrieved, with expression for
20,531 genes, out of which 59 and 51 were normal tissue
samples, respectively.

B. Preprocessing

The nomenclature for columns identifiers in BioConduc-
tor is the Human Genome Organisation (HUGO) symbol
by default. Some errors were detected, namely duplicated
gene names corresponding to different entries on distinct
databases. Therefore, according to the gene metadata file, all
identifiers were renamed as a combination of their HUGO
symbol and Entrez gene. Upon analysis, we identified two
different kinds of ”duplicate” samples belonging to the same
patient: 1) samples with the same vial and portion but
different plate; 2) samples with a different vial. To our
understanding, case one represents duplicate samples tested
on different plates for reproducibility, while two refers to
samples from different regions of the tumour. Therefore, for
case one, we averaged the samples’ values of expression, and
for two, we maintained all the samples.

C. Experiment Design

The workflow for the experiment can be divided into two
stages. In the first stage, we use gene expression normalized
data and employ two binary classifiers. One to distinguish
between tumour and tissue normal samples and another

to distinguish LUAD from LUSC samples. For the cancer
classification problem two approaches were experimented
to tackle the 9:1 ratio class imbalance of positive samples:
balancing the weights of the labels; use Adaptive Synthetic
(ADASYN) to oversample the negative class in the train and
validation sets. Furthermore, we conduct a data analysis stage
to analyze two sets of features extracted from the interpreted
models. The first feature set represents expressed genes that
better differentiate TP from NT samples, and the second
feature set represents features that distinguish between LUAD
and LUSC subtypes.

D. Classification

Gradient boosting decision trees (GBDT) are a family of
ensemble models of decision trees with various implementa-
tions such as XGBoost or pGBRT. Although these are popular
machine learning algorithms, the efficiency and scalability are
still unsatisfactory when the feature dimension is high, and
data size is large. The classifier used in this work is the light
gradient boosting machine (LightGBM), which attempts to
fix this problem by implementing two innovative techniques:
Gradient-based One-Side Sampling (GOSS) which excludes a
significant proportion of data instances with small gradients,
and Exclusive Feature Bundling (EFB) that bundles mutu-
ally exclusive features, therefore, reducing the number of
features [9].

The train, validation and test splits were obtained using
stratified sampling with a (70,15,15)% split for cancer predic-
tion and (80,10,10)% for the subtype classification problem.
The larger size of the independent test size on the first
problem is due to the labels’ imbalance; therefore we need to
guarantee a minimum amount of negative samples for support
in the test and validation sets. Hyper-parameters were tuned
with a Bayesian optimizer using 5-fold cross-validation, and
when performing data augmentation, the oversampling was
done for each fold to avoid data leakage. The train and
test splits were executed 100 times, randomizing the split
seed to reduce variability and overcome skewness caused by
the short sample size and class imbalance. The evaluation
metrics’ binary cross-entropy (logloss) and area under the
ROC Curve (AUC) were used to assess training performance
and control overfitting by early stoppage. Logloss metric
captures the extent to which predicted probabilities diverge
from class labels. Both these metrics evaluate the model’s
degree of separability. To evaluate the test set’s performance,
we used AUC, accuracy, precision, recall and f1-score metrics
to better assess our results against similar research.

E. Optimization

The Bayesian optimization, in which a learning algorithm’s
generalization performance is modelled as a sample from
a Gaussian process (GP), tries to find the minimum of a
function f(x) on some bounded set X . The difference from
traditional methods such as randomized search is that it
constructs a probabilistic model for f(x) and then exploits
this model to make decisions about where in X to evaluate
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TABLE I
HYPER-PARAMETERS FOR CANCER AND SUBTYPE CLASSIFICATION.

Hyper-Parameters Cancer Classification Subtype Classification
n estimators 256 154
max depth 6 8
learning rate 0.1048 0.9173
feature fraction 0.2673 0.7457
bagging fraction 0.1067 0.4718
min split gain 0.0002 0.0141
min child weight 0.0057 0.0053
min child samples 5 17
reg alpha 0.0140 0.0103
reg lambda 0.1100 0.1368
scale pos weight 4.9604 2.3732

the function next [10], which decreases the cost of finding the
solutions when the black-box function f is complex, which
is the case of more elaborate machine learning models. A
critical step of this optimizer is deciding on an acquisition
function, expected improvement was chosen, and the meta-
parameter ξ that defines the exploitation-exploration trade-off
was optimized by trial and error over five steps in the [1e−4,
1e−1] search space. We optimize the hyper-parameters by
minimizing logloss. Logloss takes the ”certainty” of classi-
fication into account, and this is especially relevant when
designing a model to diagnose deadly disease, as we want
to penalize bad decisions and not necessarily only improve
performance.

III. RESULTS

A. Best Hyperparameters

For each problem, we ran approximately 10,0000 steps
of Bayesian optimization with 5-fold cross-validation.
The optimal value for the meta-parameter ξ was fixed
at 1e−2, which prioritizes exploration over exploitation. In
TABLE I, we present the optimal values for the hyper-
parameters of the LGBM classifiers.

The Bayesian optimization’s optimal step showed a cross-
validation loss of 0.00007 for cancer classification and
0.00048 for subtype classification. Higher depth values
showed better results for both problems, and the number of
leaves was fixed at 2max depth − 1.
L1 (reg alpha) and L2 (reg lambda) regularization were
added to force sparsity and to diminish the value of the
weights, which conferred a reduction in standard deviation
across runs. The scale pos weight parameter value was
higher in the cancer classification problem considering the
9:1 ratio class imbalance of positive samples.

B. Classification Results

In TABLE II, we present the cancer prediction and subtype
classification models’ performance. The cancer classification
model showed an average AUC of 0.983. The average number
of independent test samples’ for support was 154.55 for the
positive class and for the negative 17.67. The model showed
higher precision for the majority class and higher standard
deviations for the negative class; this is to be expected
because of the low sample count of the negative class which

TABLE II
PERFORMANCE OVER 100 RUNS OF THE LGBM MODEL FOR CANCER

AND SUBTYPE CLASSIFICATION.

(Mean ± Standard Deviation)Metrics Cancer Classification Subtype Classification
AUC 0.983±0.017 0.971±0.018
Accuracy 0.995±0.006 0.971±0.018

Positive Negative Positive Negative
Precision 0.997±0.005 0.976±0.036 0.962±0.020 0.980±0.022
Recall 0.997±0.004 0.969±0.046 0.980±0.022 0.961±0.023
F1-score 0.997±0.003 0.972±0.030 0.971±0.014 0.970±0.015

should induce more variance in results. The cancer subtype
classification model showed an average AUC and accuracy
of 0.971. The average support for the positive class was 52
and 50 for the negative. Precision was better for the negative
class (LUSC), and variance was more stable amongst both
classes.

C. Most Relevant Gene Signatures

To provide model interpretability, we used SHapley Addi-
tive exPlanations (SHAP) technique. This method explains
individual predictions by estimating each feature’s contri-
bution to the corresponding prediction and, consequently,
assigning it a SHAP value. Features with larger absolute
SHAP values are more important for prediction and can
positively or negatively impact the prediction depending on
its sign.

In Figures 1(a), 1(b) we provide the SHAP summary plot
for cancer and subtype classification problems across 100
runs, which combines feature importance with feature effects.
The plot’s y-axis identifies a gene, represented by its HUGO
symbol and Entrez Gene and the x-axis the corresponding
SHAP values for each data instance. The genes are ordered
on the y-axis by overall predictive importance, and the top 20
most important genes were selected for analysis. The colour
gives us a visual representation of features’ original value
distributions, categorized into low or high values of gene
expression. This visualization can give us a holistic view of
the model’s decision as it conjugates the importance of the
features with the effect on prediction while showing the value
distribution of those features in the original data.

For the cancer classification problem, a total of 1,183 genes
were selected by the model for prediction. Figure 1(a) shows
the genes that more adequately distinguish between cancer-
ous and non-cancerous samples according to the model. The
negative weights represent features with a negative effect
on prediction, which equates to features whose effect helps
to predict NT samples, and the positive weights bind the
decision to predict cancerous tissue. Amongst these top 20
genes, we can clearly see a pattern used for prediction:
most of the selected genes when over-expressed affect the
prediction negatively; and when under-expressed affect the
prediction positively. Exceptions to this are STX1A, EFNA3
and C16orf59 genes, which present mostly low expression
in both classes and some visible over-expression, which
positively impacts the prediction. Generally, the analysis of
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(a) Cancer Prediction (b) Subtype Classification

Fig. 1. SHAP values over 100 runs for the LGBM model. The y-axis identifies genes and the x-axis the corresponding SHAP values for each data instance.

the 20 most important gene expression signatures for cancer
prediction shows a pattern of selecting signatures with a high
expression that are important to predict for normal tissue.

For the cancer subtype classification problem, 2,685 genes
presented non-null weights and therefore, were used for
prediction. Figure 1(b) shows that the expression value of
genes is more balanced across features with a positive
and negative effect on model output. Negative weights bias
decision to predicting LUSC samples and positive weights
bias the decision to predict LUAD samples. We can infer
two groups of genes that show identical patterns: MACC1,
LOC728759, DDAH1, BCL2L15, ELFN2, SLC44A4 and
ERBB3 represent the first group that shows mostly over-
expression when binding the decision to predict LUAD, and
under-expression when negatively affecting the prediction;
the second group containing the remaining 13 genes present
a symmetrical pattern with mostly over-expression when
important for the model to predict LUSC tissue.

IV. CONCLUSIONS AND PERSPECTIVES

This work proposes a methodology for lung cancer pre-
diction and subtype classification based on gradient boosted
trees. A critical difference between our proposed approach
and the DL models, covered in state of the art, is that LGBM
eradicates the need for a priori feature selection as the model
removes redundant features by performing EFB. Two feature
sets were extracted using model interpretability that should
provide biological insight on differences in gene expression
between cancerous and healthy tissue, and LUAD and LUSC
subtypes. Preliminary results show that our methods outper-
form previous work results’ that use DL methods for lung
cancer prediction and subtype classification. In future work,
we intend to further validate these results by extending the
learners to other cancer types and performing validation to
datasets outside of the TCGA scope.
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