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Abstract—Lung segmentation represents a fundamental step
in the development of computer-aided decision systems for the
investigation of interstitial lung diseases. In a holistic lung
analysis, eliminating background areas from Computed Tomog-
raphy (CT) images is essential to avoid the inclusion of noise
information and spend unnecessary computational resources
on non-relevant data. However, the major challenge in this
segmentation task relies on the ability of the models to deal with
imaging manifestations associated with severe disease. Based on
U-net, a general biomedical image segmentation architecture,
we proposed a light-weight and faster architecture. In this 2D
approach, experiments were conducted with a combination of
two publicly available databases to improve the heterogeneity
of the training data. Results showed that, when compared
to the original U-net, the proposed architecture maintained
performance levels, achieving 0.894 ± 0.060, 4.493 ± 0.633 and
4.457 ± 0.628 for DSC, HD and HD-95 metrics, respectively,
when using all patients from the ILD database for testing
only, while allowing a more efficient computational usage.
Quantitative and qualitative evaluations on the ability to cope
with high-density lung patterns associated with severe disease
were conducted, supporting the idea that more representative
and diverse data is necessary to build robust and reliable
segmentation tools.

Index Terms—Deep Learning, Lung Segmentation, CT Im-
ages, Interstitial Lung Diseases.

I. INTRODUCTION

The lung is the most vulnerable internal organ, due to
the constant exposition to the external environment [1].
Respiratory diseases comprise a large variety of pathologies,
from lung cancer to chronic obstructive pulmonary disease
(COPD), and they are among the most common causes of
severe illness and death worldwide [1]. In general, the auto-
matic methods developed to help with lung disease detection
and diagnosis would need to segment this organ for further
analysis of the internal structures. For this reason, a robust
method for lung segmentation is one of the first requirements
for computer-aided decision (CAD) in lung problems. From
the literature, there are several works on the field; however,
on severe pathological cases or abnormalities, they usually
originate inaccurate segmentations [2]. Since those segmen-
tation methods were normally trained with datasets that not
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cover all the pathological heterogeneities, they have difficulty
in dealing with the extreme cases. The most recent proposed
approaches are based on deep learning techniques and trained
and tested with data from private institutions in order to build
methods that can deal with the physiological changes and
keep the performance of the segmentation [3]. However, the
development of such models using only publicly available
sources of data remains a challenge in this research field,
given the lack of representative and heterogeneous public
datasets.

This study presents an investigation on the impact of the
imaging manifestations associated with severe interstitial dis-
eases in the lung segmentation task, especially high-density
abnormalities, such as fibrosis, pneumonia, consolidation, as
well as pulmonary nodules. Using only public databases, a
lighter U-net architecture is proposed, and the conducted
experiments were designed to improve the training data
diversity in order to increase the ability of the algorithms
to cope with the presence of pathological regions.

II. MATERIALS AND METHODS

A. Datasets
1) Lung CT Segmentation Challenge 2017: The Lung CT

Segmentation Challenge (LCTSC) [4] is a data collection
provided in association with a segmentation competition
regarding thoracic organs at risk (OAR): esophagus, heart,
lungs and spinal cord. This database comprises training
(LCTSC-36) and evaluation (LCTSC-24) datasets for 60
cases from 3 different institutions with different clinical
practices. Thus, CT slice thickness took values of 1 mm,
2.5 mm and 3 mm. In this database, the tumor regions
are excluded for most of the data, as well as the trachea
and main bronchus (secondary bronchi may be included or
excluded) [4].

2) ILD Dataset: The ILD database [5] is a CT dataset
collected at the University Hospitals of Geneva (HUG),
which comprises CT scans for a cohort of 128 patients
diagnosed with lung parenchyma diseases, with available
binary lung masks for a total of 113 patients. Considering
data acquisition protocol, CT scans present a slice thickness
value ranging from 1mm to 2mm, space between slices of
10 − 15 mm and pixel spacing in (x, y) directions ranges
from 0.4 − 1 mm [5]. Regarding contouring guidelines, the
lung mask ground-truth includes all pathological regions, as
well as the trachea and bronchi structures.

3) NSCLC-Radiogenomics: The NSCLC-Radiogenomics
dataset [6] is a publicly available CT image collection cover-
ing a cohort of 211 patients with non-small cell lung cancer
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(NSCLC); however, binary tumor masks are only provided
for a total of 144 patients. Considering CT acquisition
protocol, slice thickness ranges from 0.625 to 3 mm (median:
1.5 mm) [6].

B. Preprocessing

Since we addressed this task in a 2D perspective, and
given the high spacing between slices from the ILD database
CT scans (10 − 15) mm [5], resampling was employed
to standardize image representations only over the axial
(x, y) plane. Thus, the pixel spacing was set to [1.0, 1.0]
mm. Additionally, pixel intensity values, measured in the
Hounsfield Units (HU) scale, were normalized using the min-
max normalization method and the HU window of −1000
to 400 HU. Lung binary masks also went through the
same resampling operation to match the correspondent CT
dimensions. Images were cropped by body region and resized
for 256×256 pixels. Fig. 1 shows an example of a slice from
the LCTSC [4] (first row) and the ILD [5] (second row)
databases, along with the correspondent ground-truth mask
and the result of the overlay of both images.

C. Deep Learning Model Architecture

The implemented architecture was based on U-Net [7],
a general encoder-decoder based neural network specially
designed for biomedical image segmentation tasks. U-Net
comprises a contraction, bottleneck and expansion phases.
Differing from the original model, the number of channels
of each convolutional block was set to 16, 32, 64, 128 and
256. This means that, when compared with the original U-net,
the proposed network was reduced in 4 times regarding the
depth of each convolutional block, resulting in a difference
of almost 16 times in the number of trainable parameters.
A batch normalization layer was also added after each

(a) (b) (c)

(d) (e) (f)

Fig. 1: Representation of one slice from the LCTSC and ILD
databases. Figures (a) and (d) represent the raw CT slice,
(b) and (e) the lung mask ground-truths and (c) and (f) the
overlay between both, for the LCTSC and the ILD databases.

convolution, and the upsampling operation was employed
by means of a sub-pixel convolutional layer, which learns
an array of upsampling filters to upscale the low resolution
feature maps into the higher resolution image [8].

D. Experiment Design

The challenge training set (LCTSC-36) was considered
the main data source for model training. Given the fact that
tumor regions are excluded in the majority of cases in this
database, along with the lack of pathological lung regions,
the ILD database was used to improve the training data
heterogeneity. To do this, a portion of ILD patients was
selected to take part in the training set. This portion was
iteratively increased, the performance metrics were assessed
and a visual inspection of the ability to include severe
pathological regions in the lung mask predictions was also
employed. Only slices containing lung sections were included
in these experiments. In testing phase, no post-processing
operations were employed in order to reliably assess the
capacity of the proposed approaches, without specific opera-
tions to overcome prediction mistakes. Moreover, the ability
to include the tumor region was assessed using 144 CT
images from the NSCLC-Radiogenomics database. For each
CT scan, the slice with largest tumor section was segmented
to compute the nodule overlap percentage.

E. Training Parameters

The Dice Loss [9] was the loss function used for optimiza-
tion, based on the Dice score coefficient (DSC) performance
metric. Models were trained with the Adam optimizer, using
mini-batches of 8 images and a learning rate value of 0.001,
with 10% decay every 5 epochs. Data augmentation tech-
niques were employed to improve the model generalisation
ability with random operations, including horizontal and
vertical flips, image rotation and gaussian noise (µ = 0, σ =
0.1).

F. Performance Metrics

1) Dice score coefficient: The DSC is a performance
measure of relative overlap, ranging from 0 (no overlap)
to 1 (perfect overlap), measuring the similarity between the
predicted and the ground-truth masks.

2) Hausdorff distance: Given the predicted and ground-
truth contours, the Hausdorff distance (HD) represents the
maximum distance measured from a point in one set to
its closest point in the other set. The 95th percentile HD
(HD-95) measures the distance that is greater or equal than
exactly 95% of all other distances, ensuring a more reliable
evaluation in the presence of outliers.

III. RESULTS

Performance results are depicted in Table I for the DSC,
HD and HD-95 evaluation metrics, with values presented
as mean ± standard deviation. Although the models were
trained on a slice-level, the evaluation scores were computed
in a scan-level. Training sets that contained patients from the
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Slice Model 1 Model 2 Model 4 U-net (R-231)

DSC = 0.749
HD = 7.681
HD-95 = 7.647

DSC = 0.976
HD = 4.796
HD-95 = 4.791

DSC = 0.982
HD = 4.583
HD-95 = 4.577

DSC = 0.944
HD = 4.796
HD-95 = 4.791

DSC = 0.796
HD = 7.616
HD-95 = 7.570

DSC = 0.922
HD = 6.164
HD-95 = 6.095

DSC = 0.960
HD = 4.472
HD-95 = 4.472

DSC = 0.979
HD = 3.162
HD-95 = 3.154

DSC = 0.597
HD = 8.124
HD-95 = 8.071

DSC = 0.924
HD = 5.831
HD-95 = 5.763

DSC = 0.980
HD = 3.873
HD-95 = 3.873

DSC = 0.961
HD = 6.164
HD-95 = 6.029

Fig. 2: Performance evaluation using the developed models (Table I), as well as the available model from [3] for inference
(U-net (R-231)). Three distinct ILD patients were selected based on lung disease diagnosis: fibrosis, consolidation and
pneumonia from the top to bottom rows.

ILD database allowed to increase the model ability of recog-
nizing severe abnormalities as lung regions, improving scores
in all evaluation metrics. Considering the proposed modi-
fications regarding the depth of each convolutional block,
results show that the proposed light-weight architecture does
not cause a performance decrease in this segmentation task,
as can be seen in Table I. Moreover, a random CT with
360×480×480 dimensions was used to assess the inference
times of both architectures, which showed that it takes 6.749 s
to obtain the full volume lung mask prediction with the light-
weight model, against the 30.294 s (almost 5 times more)
necessary using the original U-net.

As expected, the increase on training data diversity showed
to improve the ability to deal with severe pathological regions
(Fig. 2). In a quantitative analysis of the major improvement,
the bottom slice showed a DSC increase from 0.597 to
0.980, and although performances of the U-net (R-231) [3]
are usually lower than the ones obtained with Model 4,
this was caused by differences in segmentation guidelines,
especially the exclusion of trachea and bronchi regions in the

development of the first. For this evaluation reported in Fig.
2, the three patients were selected from test sets, ensuring
that these examples were not seen before when training.

The ability to include tumor regions in lung mask pre-
dictions was also assessed using the detailed lung cancer
database, with results depicted in Table II. As expected, the
lower the tumor section, the easier it was included in the
lung mask prediction. Other tumor features as location in the
lung, shape and texture also played an important role, which
can be seen in the high standard deviation values presented.

IV. DISCUSSION AND CONCLUSIONS

In this work, we investigated the impact of the pres-
ence of severe pathological regions in an automatic lung
segmentation task. Based on the idea that architectural in-
novations, by itself, have not increased performances over
well-designed baseline models [3], [10], such as U-net [7],
we proposed a simpler and lighter U-net to investigate the
capacity of an even faster and simpler architecture. Multiple
dataset combinations were employed in order to increase the
representativeness and diversity of the training data.
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TABLE I: Performance results considering the trained models. For each model, the Train and Test Datasets are presented,
alongside with scores for DSC, HD and HD-95 evaluation metrics as mean ± standard deviation. For comparison, first row
presents reference values obtained using the original U-net, and then Models 1–4 refer to the light-weight architecture.

Performance Metrics (mean ± standard deviation)
Model Train Dataset Test Dataset DSC HD (mm) HD-95 (mm)

U-net [7] LCTSC-36 LCTSC-24 0.954 ± 0.024 3.179 ± 0.432 3.162 ± 0.429
ILD-all 0.891 ± 0.057 4.597 ± 0.651 4.561 ± 0.636

1 LCTSC-36 LCTSC-24 0.953 ± 0.025 3.194 ± 0.493 3.177 ± 0.490
ILD-all 0.894 ± 0.060 4.493 ± 0.633 4.457 ± 0.628

2 LCTSC-36 +
10% ILD patients

LCTSC-24 0.950 ± 0.028 3.206 ± 0.452 3.189 ± 0.448
ILD-test 0.946 ± 0.031 3.518 ± 0.463 3.496 ± 0.458

3 LCTSC-36 +
20% ILD patients

LCTSC-24 0.951 ± 0.025 3.285 ± 0.423 3.268 ± 0.420
ILD-test 0.954 ± 0.029 3.309 ± 0.377 3.290 ± 0.374

4 LCTSC-36 +
40% ILD patients

LCTSC-24 0.954 ± 0.022 3.203 ± 0.426 3.187 ± 0.423
ILD-test 0.962 ± 0.028 3.172 ± 0.413 3.156 ± 0.409

TABLE II: Evaluation of tumor inclusion ability using the
developed models. Overlap scores were computed using only
one slice per CT scan (the one with largest tumor section).
Size was measured using the diagonal of the correspondent
bounding-box.

Tumor overlap
(mean ± standard deviation)

Tumor section size (mm) Model 1 Model 4
] 0, 20 [ 0.612 ± 0.323 0.739 ± 0.297
[ 20, 40 [ 0.560 ± 0.336 0.607 ± 0.337
[ 40, 60 [ 0.377 ± 0.227 0.441 ± 0.239
[ 60, 80 [ 0.323 ± 0.321 0.350 ± 0.331

Considering previous works, a large variety of deep
learning-based approaches has been proposed for this task.
In the majority of these works, privately collected data was
used as primary training data source, which makes it more
difficult to obtain a fair and reliable direct comparison.
As a cause of using a diverse and heterogeneous training
data, those models were always able to obtain the most
successful results when comparing to the ones developed
using only public data [3], [11]. The differences in contouring
guidelines between databases must be considered and a basic
quantitative evaluation might not be sufficient due to the
impact of the inclusion or exclusion of some regions in
performance metrics. The conducted qualitative evaluation
regarding the ability to obtain reliable lung masks with severe
disease is a useful representation of this idea. With Model
4, we were able to deal with the majority of segmentation
mistakes, although some still persisted, which can be con-
firmed in the depicted examples. However, as a consequence
of this mixed training data, trachea and bronchi regions were
included in the predicted masks, which did not happen when
using the selected inference model (U-net (R-231) [3]). This
makes reproducibility and comparison between investigations
impossible in some cases, and increases the urgency for the
public access of diverse and representative datasets to develop
universal tools for lung clinical research.

Lung segmentation is a critical processing task for sev-
eral holistic lung analyses. By successfully dealing with
the presence of tissue abnormalities, it results in the most
efficient lung representation with the necessary information
to be further investigated. Thus, the importance of the tumor

information is indisputable so it must be included in the lung
mask predictions. The tumor overlap reported results showed
that the implemented solutions have not yet overcome this
problem. With larger and more challenging tumor regions,
the robustness of the models must be improved for more
reliable and adequate mask predictions.
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