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Abstract— Recently, transfer learning and deep learning
have been introduced to solve intra- and inter-subject
variability problems in Brain-Computer Interfaces. However,
the generalization ability of these BCIs is still to be further
verified in a cross-dataset scenario. This study compared
the transfer performance of manifold embedded knowledge
transfer and pre-trained EEGNet with three preprocessing
strategies. This study also introduced AdaBN for target domain
adaptation. The results showed that EEGNet with Riemannian
alignment and AdaBN could achieve the best transfer accuracy
about 65.6% on the target dataset. This study may provide
new insights into the design of transfer neural networks for
BCIs by separating source and target batch normalization
layers in the domain adaptation process.

I. INTRODUCTION

Electroencephalography (EEG)-based Brain-computer In-
terfaces (BCIs) enable the human brain to control machines
without any physical intervention [1]. EEG-based BCIs have
been used in many ways, e.g., quadcopter control [2], stroke
rehabilitation [3], and glaucoma detection [4]. However,
intra- and inter-subject variability hinders practical usages
of BCIs due to EEG signals are non-stationary, easily con-
taminated by noise signals and vary across different subjects
or across time within the same subject [5]. A calibration
stage is usually required to collect enough training data for
rebuilding a subject-specific model before the beginning of
each session, which is inconvenient and time-consuming.

Recently, deep learning and transfer learning have been
introduced to the BCI community for alleviating the negative
impacts of cross-subject variability [6]. ShallowConvNet [7]
and EEGNet [8], both imitate temporal and spatial filters
in FBCSP [9], have shown the cross-subject generalization
ability without fine-tuning. Zhang et al. proposed a mani-
fold embedded knowledge transfer (MEKT) method [10] by
fusing the transfer component analysis (TCA) [11] and the
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joint distribution adaptation (JDA) [12], which outperforms
several transfer learning approaches for BCI datasets.

However, current deep learning and transfer learning al-
gorithms are usually validated in single datasets. It assumes
that data of all subjects are acquired under the same condi-
tions, e.g. the same acquisition system and lab environment,
which are generally violated in the cross-dataset scenario.
For this problem, Chiang et al. proposed a least-squares
transformation (LST)-based transfer learning method that
significantly improved the decoding accuracy of steady-state
visually evoked potentials (SSVEP) across devices [13].
In our previous work [14], we have also shown that the
cross-dataset variability would weaken the generalizability
of deep learning models across motor imagery (MI) datasets.
A possible solution to alleviate the impact of cross-dataset
variability is to apply the whitening procedure [15] for each
subject. This procedure would align the covariance centroid
of each subject and is often used as a preprocessing step in
many transfer learning algorithms [10], [16].

This study further investigates the generalization perfor-
mance of deep learning models across datasets. We validated
the performance of EEGNet with three preprocessing strate-
gies, namely channel normalization, trial normalization, and
Riemannian alignment. This study also introduced Adaptive
Batch Normalization(AdaBN) [17]. The results show that the
Riemannian aligning and AdaBN could easily improve the
generalizability of EEGNet without fine-tuning.

The organization of the rest of the work is as follows.
Section II describes the datasets and methods used in this
work. Section III presents the study results and discussions.
Finally, Section IV concludes this study.

II. METHODS

A. Datasets

This study used the EEG data from two public datasets
BNCI2014001 [18] and PhysioNetMI [19]. Both datasets
were downloaded using the MOABB package [20]. Table
I lists the details of the datasets. This study selected twenty-
two common channels between both datasets. Only the
left-hand and right-hand MI classes were included in our
analysis. Raw data were filtered with an FIR bandpass filter
of 4-40Hz and zero-phase forward-and-reverse filtering was
implemented using raw.filter() function in MNE [21]. Each
trial was 3s in length and downsampled to 128Hz such that
the size was 22 × 384. Each trial has been centered by
subtracting its mean vector of each channel. BNCI2014001

2021 43rd Annual International Conference of the
IEEE Engineering in Medicine & Biology Society (EMBC)
Oct 31 - Nov 4, 2021. Virtual Conference

978-1-7281-1178-0/21/$31.00 ©2021 IEEE 5800



TABLE I
DETAILS OF DATASETS

Dataset Classes Subjects Trial Duration(s) Channels Sampling Rate(Hz) Number of trials
BNCI2014001 left/right/feet/tongue 9 4 22 250 2592
PhysionetMI left/right/hands/feet 109 3 64 250 4918

TABLE II
EEGNET ARCHITECTURE

Layer Input Size Output Size Channel Kernel Stride Padding Constraint
Conv2d 1× 22× 384 8× 22× 384 8 (1, 64) (1, 1) SAME
BatchNorm2d 8× 22× 384 8× 22× 384
Depthwise Conv2d 8× 22× 384 16× 1× 384 16 (22, 1) (1, 1) MaxNormConstraint(1)
BatchNorm2d 16× 1× 384 16× 1× 384
Elu 16× 1× 384 16× 1× 384
AvgPool2d 16× 1× 384 16× 1× 96 (1, 4) (1, 4)
Dropout 16× 1× 96 16× 1× 96
Separable Conv2d 16× 1× 96 16× 1× 96 16 (1, 16) (1, 1) SAME
BatchNorm2d 16× 1× 96 16× 1× 96
Elu 16× 1× 96 16× 1× 96
AvgPool2d 16× 1× 96 16× 1× 12 (1, 8) (1, 8)
Dropout 16× 1× 12 16× 1× 12
Flatten 16× 1× 12 132
Linear 132 2 MaxNormConstraint(0.25)

was used as the source dataset and PhyisoNetMI was used
as the target dataset.

For evaluating the performance of models, trials in the
source dataset were randomly split into training, validation
and test sets by a 5-fold stratified sampler with preserving
the percentage of trials for each class in each subject. The
test set was 20% of the available data. 20% of the remaining
data were referred to as the validation set and the rest of
them were training set. The training and validation sets of the
source dataset were used for training MEKT and EEGNet.
The test set of the source dataset was used for evaluating
the within-subject classification. Data of each subject in the
target dataset were kept for the cross-dataset classification.

B. MEKT

This work used MEKT as the baseline algorithm. MEKT
first aligns the covariance matrices of EEG trials in the
Riemannian manifold and then extracts tangent space fea-
tures. Domain adaptation is performed to map source and
target features to a new space such that the difference
between the joint probability distributions of the source and
target domains is minimized while preserving their geometric
structures. A linear discriminant analysis (LDA) classifier
is trained with the transformed source features and applied
to the transformed target features to predict their labels.
Parameters of the MEKT were set to default as the original
authors proposed [10]. More details of MEKT can be found
in [10] and https://github.com/chamwen/MEKT.

C. EEGNet

Table II lists the architecture of EEGNet. This archi-
tecture is the latest version of the original authors pro-
posed. Our EEGNet model was implemented in PyTorch

framework [22]. The optimizer was Adam with the learn-
ing rate set to 0.001 and the batch size was 256 in the
source dataset. We trained the model for 200 epochs and
selected the best model on the validation set for further
analyses. More details of EEGNet can be found in [8] and
https://github.com/vlawhern/arl-eegmodels.

D. Preprocessing strategies

Three preprocessing strategies were compared in this
work:

• Channel normalization. In this strategy, normalization
was implemented in each channel. It is calculated by
dividing the standard deviation of each channel. The
model trained with this strategy was named EEGNet-
cnorm.

• Trial normalization. Trial normalization was imple-
mented in each trial instead of each channel. It is
calculated by dividing its standard deviation of the
flattened array. Compared to channel normalization,
trial normalization would keep the relative magnitude
of channels. The model trained with this strategy was
named EEGNet-tnorm.

• Riemannian alignment. In this strategy, each trial was
whitened by a reference matrix M for each subject. The
transformation is as follows:

Êi = M−1/2Ei (1)

where Ei is the EEG data matrix of the i-th trial.
The reference matrix M is the Riemannian mean of
covariance matrices of all trials for each subject. The
model trained with this strategy was named EEGNet-
rie.
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Fig. 1. Distributions of the difference between the softmax output of the last layer of EEGNet of a typical target subject. (a) distribution of the EEGNet.
(b) distribution of the EEGNet with Riemannian alignment. (c) distribution of the EEGNet with Riemannian alignment and AdaBN.

Fig. 2. Classification results of models with AdaBN (w/ AdaBN) or without
AdaBN (w/o AdaBN) on the target dataset. * indicates p < 0.05 and ***
indicates p < 0.001.

E. AdaBN

The idea behind AdaBN is simple. It hypothesizes that
label-related information is stored in the weights of each
layer whereas domain-related information is represented by
the statistics of the Batch Normalization (BN). Therefore, it
would be easy to transfer the pre-trained model to the target
domain by modulating the statistics in the BN layer [17].
In this work, the running mean and variance parameters of
the BN layers were replaced by the mean and variance of
data of the target subject. Meanwhile, other parameters of
pre-trained models were fixed. More details of AdaBN can
be found in [17].

III. RESULTS AND DISCUSSION

A. Within-subject Classification Results

The accuracy of EEGNet on the test set of the source
dataset was 0.795(0.012). The accuracy of EEGNet-cnom
and EEGNet-tnorm was 0.808(0.017) and 0.807(0.017),
respectively. No significance was found between these
three models. However, the accuracy of EEGNet-rie was
0.877(0.011), which was significantly better than that of
others (paired sample T-test, p < 0.05).

The improvement of performance may be owned to more
consistent distributions of inputs. Riemannian alignment not
only eliminates the difference in the magnitudes of sub-
jects’ data, but also compensates for covariate shift which
describes the difference in distributions of inputs. Due to
the congruance invariance of the Riemannian distance, while
the distances between trials of the same subject remain
unchanged, the centroids of all subjects are centered at the
identity matrix [15]. Deep learning models with Riemannian
alignment can converge more easily and find the common
features of all subjects.

B. Cross-dataset Classification Results

Fig.1 shows the distributions of the difference between the
softmax output of the last layer of EEGNet for a typical target
subject. Fig.1(a) is the distribution of the naive EEGNet
model, which indicates that the decision boundary was about
0.75 instead of the normal zero. The decision boundary bias
could be eliminated with Riemannian alignment and AdaBN,
as shown in Fig.1(b) and Fig.1(c).

Fig.2 shows the accuracies of the pre-trained models on the
target dataset. The accuracy of MEKT was 0.637(0.003). The
direct transfer accuracy of EEGNet was about 0.611(0.012).
The accuracy of EEGNet-cnorm and EEGNet-tnorm was
0.608(0.005) and 0.618(0.006), respectively. EEGNet-tnorm
was slightly better than EEGNet-cnorm and EEGNet, but
no significance was found between them. The accuracy of
EEGNet-rie was 0.634(0.005), which was significantly better
than that of other preprocessing strategies (paired sample T-
test, p < 0.05). No significance was found between EEGNet-
rie and MEKT. All preprocessing strategies including naive
EEGNet could be significantly improved with AdaBN as
shown in Fig.2 (paired sample T-test, p < 0.001). The best
transfer performance was 0.656(0.006) for the EEGNet-rie
model with AdaBN, which was significantly better than that
of MEKT (paired sample T-test, p < 0.05).

The results of cross-dataset classification further show
that Riemannian alignment is better than other preprocessing
strategies. Although channel normalization and trial nor-
malization can elimiate the difference in magnitudes of
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the inputs, they can not correct covariate shift of each
subject. Moreover, an unreasonable normalization strategy
may weaken the generalizability of models. Fig.2 shows the
accuracy of EEGNet-tnorm was slightly better than that of
EEGNet-cnorm. Trial normalization can keep the relative
magnitudes of channels, which may be useful in the training
of models.

The BN layer is originally designed to alleviate the issue
of internal covariate shift, which is the change in the distri-
bution of network activations due to the change in network
parameters during training [23]. The BN layer makes the
input distribution of each layer remains unchanged during the
training process and accelerates the convergence of models.
However, the BN layer still assumes that the source domain
and the target domain have the same distribution, which is
usually violated due to high variability in EEG data. Im-
proper parameters of BN layers would cause the distribution
of outputs to deviate further from the expected distribution,
even with Riemannian alignment preprocessing strategy. To
solve this problem, AdaBN replaces the parameters in the BN
layers with parameters computed from the data of the target
domain. Fig.1 shows how the distribution of outputs changes
with different methods. Fig.1(a) shows that the decision
boundary of naive EEGNet was shifted to about 0.75 instead
of the normal zero, meaning that the distribution of outputs
is highly biased due to the negative impacts of covariate
shift and internal covariate shift. Covariate shift could be
corrected with Riemannian alignment, as shown in Fig.1(b),
and internal covariate shift could be further alleviated with
AdaBN, as shown in Fig.1(c).

IV. CONCLUSIONS

This study evaluated the performance of EEGNet mod-
els with different preprocessing strategies for the cross-
dataset scenario. This study also introduced AdaBN for
better transfer performance. The results showed that EEGNet
with Riemannian alignment and AdaBN could easily achieve
better transfer performance without fine-tuning. This study
may provide new insights into the design of transfer neural
networks for BCIs by separating source and target batch
normalization layers in the domain adaptation process.
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