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Abstract— Molecular profiling of the tumor in addition to
the histological tumor analysis can provide robust information
for targeted cancer therapies. Often such data are not
available for analysis due to processing delays, cost or
inaccessibility. In this paper, we proposed a deep learning-
based method to predict RNA-sequence expression (RNA-seq)
from Hematoxylin and Eosin whole-slide images (H&E WSI) in
head and neck cancer patients. Conventional methods utilize a
patch-by-patch prediction and aggregation strategy to predict
RNA-seq at a whole-slide level. However, these methods lose
spatial-contextual relationships between patches that comprise
morphology interactions crucial for predicting RNA-seq. We
proposed a novel framework that employs a neural image
compressor to preserve the spatial relationships between
patches and generate a compressed representation of the
whole-slide image, and a customized deep-learning regressor
to predict RNA-seq from the compressed representation by
learning both global and local features. We tested our proposed
method on publicly available TCGA-HNSC dataset comprising
43 test patients for 10 oncogenes. Our experiments showed that
the proposed method achieves a 4.12% higher mean correlation
and predicts 6 out of 10 genes with better correlation than
a state-of-the-art baseline method. Furthermore, we provided
interpretability using pathway analysis of the best-predicted
genes, and activation maps to highlight the regions in an
H&E image that are the most salient of the RNA-seq prediction.

Clinical relevance—The proposed method has the potential
to discover genetic biomarkers directly from the histopathology
images which could be used to pre-screen the patients before
actual genetic testing thereby saving cost and time.

I. INTRODUCTION

In cancer diagnosis and treatment, molecular profiling of
patients is in increasing demand to take advantage of targeted
or biomarker-based therapies. For example, patients with
lung cancer who have EGFR gene mutations or patients
with melanoma who have BRAF gene mutations have got
approval for targeted therapies by the US Food and Drug
Administration. Although molecular profiling can accurately
characterize the genotype of a given tumor, these data are not
routinely used in analysis due to high cost, relatively long
turnaround time (days to weeks), and inaccessibility even
in premier care centers. On the other hand, histopathology
images such as H&E WSI can be acquired inexpensively and
are accessible even under low resource settings [1].

Studies have shown that there exists a relationship between
cell morphology in histology data and genetic mutations
in molecular data. This relationship can be well exploited
by deep learning techniques to predict one modality from
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another [1]-[5]. The first work in this direction was done by
Coudray et al. where they proposed a multi-task Inception
network to predict 10 most commonly mutated genes in
lung adenocarcinoma and found that mutations of a few
genes can be predicted directly from pathology images with
accuracy ranging from 74% to 83% [2]. Another work
done by Schaumberg et al. proposed a meta-ensemble of
ResNet model to predict SPOP gene mutations from prostate
cancer images and achieved more than 70% accuracy [3].
Furthermore, researchers have proposed techniques to predict
clinically relevant biomarkers such as tumor mutation burden
and microsatellite instability directly from H&E images
[4][5].

RNA sequencing is one of the types of molecular profil-
ing that provides an efficient high-throughput technique to
robustly characterize the tumor-immune microenvironment
(TME) of cancer patients [6]. The increasing use of RNA-
seq expression has enabled the discovery of novel biomarkers
that are responsive to cancer immunotherapy. Based on the
genotype-phenotype correlations, a recent study proposed a
deep learning method to predict RNA-seq directly from H&E
WSI [7]. The method uses a patch-based framework where an
H&E WSI is first divided into patches, then a deep learning
model is trained to predict RNA-seq for each patch and
finally the results of all patches are aggregated to get whole-
slide level RNA-seq. Although this study initiated the field
of RNA-seq prediction from H&E images, the results still
show a low correlation between actual and predicted gene
expression values in RNA-seq for most cancer types.

We hypothesize certain drawbacks of the current approach.
Firstly, there is an inherent assumption that each patch has
a sufficient signal to express whole-slide level RNA-seq.
The method randomly samples a subset of total patches
from H&E WSI that may lead to exclusion of informative
regions or inclusion of noisy regions in the image that leads
to low correlation. Secondly, by dividing H&E WSI into
patches and treating each patch individually, we lose the
spatial-contextual relationship between patches that contain
cell morphology patterns important for predicting RNA-seq.
For example, spatial structures in TME at the boundary of the
tumor and non-tumor cells are very sensitive for RNA-seq
prediction but these structures are lost in the conventional
patch-by-patch-based technique [7].

In this paper, we proposed a spatial-context-aware RNA-
seq prediction method that preserves spatial relationships
between patches and utilizes the entire H&E WSI instead of
randomly sampled patches to predict RNA-seq. We employed
neural image compression to compress a whole-slide image
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Fig. 1. Block diagram of our proposed method, (a) input H&E whole-slide image, (b) extracted tissue-regions marked in yellow color, (c) extracted
patches from the tissue-regions marked by blue crosses, (d) compressed spatial-contextual features where each small image in the grid is a WSI-level
feature representation, (e) deep learning regression model and (f) output RNA-seq prediction comprising of three gene expression values as an example.

into a compressed feature representation that maintained the
spatial consistency between the patches and designed a deep
learning regressor based on the VGG-Net [8] architecture to
infer RNA-seq from the compressed feature representation.
With this framework, we avoided the assumption that each
patch has RNA-seq information and used both the local
cellular features and the global spatial features for inferring
RNA-seq at the whole-slide level. We tested our method on
a publicly available dataset for head and neck cancer [9]
and showed improvements over the conventional method that
ignored spatial-contextual information.

II. METHODOLOGY

Fig. 1 shows a block diagram of our proposed method
which comprises of three main steps: 1) dataset pre-
processing, 2) spatial-contextual feature extraction, and 3)
deep-learning regression.

A. Dataset preparation

In this study, we used the publicly available dataset from
the Cancer Genome Atlas (TCGA) [9]. We selected primary
tumor samples for head and neck squamous cell carcinoma
(HNSCC), for which both H&E WSI and RNA-seq data
were available. Since tumors are heterogeneous and diverse,
a pan-cancer model might not have generalized well to all
cancer types and provides fewer insights about cancer. Thus,
we focused our study on a single type of cancer, namely,
HNSCC, which is not well-examined in literature yet [2]-[5].
HNSCC includes cancers of multiple sites in head and neck
region which are morphologically different and challenging.
We selected 462 patients from TCGA-HNSC database with
matched H&E WSI and RNA-seq data in FPKM-UQ format.

B. Dataset pre-processing

We pre-processed both H&E WSI and RNA-seq data for
all 462 HNSCC patients. Due to memory constraints, we first
downsampled an input H&E WSI by 4× and then applied
Otsu thresholding to separate tissue regions from background
regions. Next, we extracted patches of size 128×128, a
common patch size used in histopathology image analysis
literature [10], with their corresponding locations from the

tissue regions only. For RNA-seq data pre-processing, we
excluded genes with a median expression value equal to zero,
i.e., those genes that are not expressed in more than 50%
of patients. We further shortlisted relevant genes based on
GEPIA software [11] and the OncoKB database [12]. The
selection was based on differential expression genes between
normal and tumor samples with a log-fold change greater
than 1 and q-value significance less than 0.01. Only those
genes which were annotated as cancer-related and curated by
OncoKB were considered for further analysis. This led to the
selection of 10 genes for our analysis: PTK6, DKK4, EGR1,
HIST1H2BD, HIST1H2BK, HIST1H3H, INHBA, SOCS1,
TAP1, OXC11. Since gene expression FPKM-UQ values
have varied magnitude scales, we applied a→ log10(1 + a)
transformation to normalize the magnitude scales.

C. Spatial-contextual feature extraction

After converting H&E WSI into patches, we extracted
features from each patch to represent a low-dimensional
pixel space into a high-dimensional feature space. To extract
features while retaining the spatial-contextual information,
we employed a Neural Image Compression (NIC) technique
for compressing H&E WSI [13]. NIC uses a neural network
to map patches into feature vectors and then places each
feature vector into an array that keeps the original spatial
arrangement intact such that neighboring feature vectors
in the array represent neighboring patches in the original
H&E WSI. Several neural network architectures have been
proposed in NIC, out of which we selected variational auto-
encoder (VAE) which has shown good performance in the
medical image classification tasks. We used a pre-trained
VAE from [13] trained on H&E datasets that are quite similar
to our dataset for obtaining compressed features.

D. Deep learning regression

We designed a deep learning regression model based
on the VGGNet which is a well-established deep learning
architecture. Our model inputs the compressed feature rep-
resentation of H&E WSI as feature vectors and outputs RNA-
seq prediction comprising of 10 gene expression values.
All the feature vectors are resized to size 224×224 as per
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Fig. 2. Comparison between proposed and baseline methods: (a) overall correlation and (b) gene-wise correlation. Bars indicate mean performance on test
patients with 95% confidence interval error bars. ns: not significant, +: p < 10−1, ∗: p < 5× 10−2, ∗∗: p < 10−2, ∗∗∗: p < 10−3, ∗∗∗∗: p < 10−4.

the VGGNet architecture setting with the number of input
channels set to 128 which is the length of each feature
vector. The proposed architecture contains 8 convolutional
layers of kernel size (3,3) with stride = 1 and padding
= 1 each followed by a batch-normalization layer and a
max-pooling layer with stride = 2 and padding = 2. Also,
we added 2 hidden fully-connected layers with 512 units
each and an output fully-connected layer with 10 units. The
convolutional layers learn local patch-level and global image-
level features through a hierarchical learning process and the
fully-connected layers regress the gene values based on the
learned features.

We optimized the loss function of the proposed deep
learning model with the mean-squared error (MSE) loss
function that computes the mean of the summation of the
squared difference between the ground-truth and predicted
RNA-seq gene expression values over the H&E WSI used
during training. Mathematically, MSE is defined as follows,

MSE =
1

N

N∑
i=1

(yitrue − yipred)2 (1)

where, i denotes the ith image out of total N training
images, yitrue denotes the ground-truth and yipred denotes
the predicted RNA-seq for the ith training image.

III. EXPERIMENTS

We divided the TCGA-HNSC 462 patient data into 375
training patients, 44 validation patients, and 43 test patients.
The training set is used to train the deep learning regression
model, the validation set is used for hyperparameter tuning
and the test set is used for evaluating performance against
a baseline. We used PyHist software [14] for H&E WSI
pre-processing, PyTorch [15] framework for creating deep
learning models, and NVIDIA Tesla V100 GPU for training.

We have selected the HE2RNA model as our baseline
method which is the current state-of-the-art in the RNA-
seq prediction task [7]. The HE2RNA model is a pan-
cancer model trained and tested on 28 different cancer types.
To conduct a fair comparison between the baseline and
the proposed methods, we re-implemented the HE2RNA

Fig. 3. Top-8 immunological pathways activated by the 6-best predicted
genes with statistical significance measured in − log(p-value).

model on our TCGA-HNSC dataset using the same training
and testing protocol as the proposed method. We used the
Pearson correlation coefficient between the ground-truth and
predicted RNA-seq gene expression values as an evaluation
metric. Furthermore, we used Wilcoxon signed-rank test to
compare the distribution of gene values in the ground-truth
and predicted RNA-seq with a significance level of α = 0.05.

We set model hyperparameters as follows. The learning
rate is equal to 3e−5 with 0.1 factor decay after 5 consecutive
epochs if the validation metric saturates, the number of
epochs is equal to 200 for training the model and batch-size
is equal to 32 samples. To prevent overfitting, we used early
stopping during training with patience set to 10 epochs. We
used ReLU activation in all the layers except output layer.

IV. RESULTS AND DISCUSSION

A. Correlation with the RNA-seq ground-truth

Fig. 2 shows the comparison between proposed and base-
line methods for overall mean correlation and gene-wise
mean correlation. The proposed method outperforms the
baseline method by 4.12% in overall correlation and predicts
6 out of 10 genes with higher correlation than the baseline
method. Since the TCGA-HNSC cohort is diverse with biop-
sies from multiple sites and different subtypes, our method is
promising in predicting the genes relevant for HNSCC. The
proposed method demonstrates the ability of a deep learning
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Fig. 4. Activation maps generated using GRAD-CAM++ on few samples from our dataset. Yellow color indicates high attention region in H&E WSI.

network to predict RNA-seq in smaller cohorts (order of
100’s) which is relevant in a real case scenario. Further
training on relevant image datasets will help a researcher
to study genes and their associated morphological changes
which as we show can be well-exploited by a non-linear
deep learning network. For example, PTK6 gene influences
morphology in normal tissue by promoting cellular differ-
entiation and apoptosis, and in cancer tissue by sensitizing
cells to mitogenic signals and enhancing proliferation.

B. Activation of immunological pathways

We also examined the immunological pathways activated
by the best-predicted genes using Reactome software [16].
Fig. 3 shows the top-8 pathways based on their statistical
significance measured in − log(p-value) activated by the 6-
best predicted genes. The genes for which the expression
was most accurately predicted are associated with pathways
important for HNSCC. For example, the altered DNA methy-
lation pathway is an important factor associated with HNSCC
development [17] and SIRT1 expression is a good indicator
of HNSCC prognosis [18]. This shows that our method has
the potential to predict genes with high clinical importance.

C. Model interpretability with activation maps

We provided interpretability of the proposed model using
activation maps generated by GRAD-CAM++ [19]. The
maps highlight the regions in H&E WSI which are the
most salient of the RNA-seq prediction. Unlike the baseline
method, we retain the spatial locations of all the patches
which makes it possible to generate such saliency maps and
makes our model interpretable for biologists. Fig. 4 shows
activation maps for few samples from our dataset. In all
samples, our model gives high attention to tissue regions and
ignores the background. We observed that a certain region
of the H&E WSI gets high attention. On zooming-in the
image (e.g. Fig. 4(d)-(e)), we found visual differences in cell
morphology in high (A) and low (B) attention regions that
can help in discovering RNA-seq associated visual patterns.

V. CONCLUSION

We proposed a spatial-context-aware RNA-seq prediction
method from H&E WSI. Our framework has a neural im-
age compressor that compresses a WSI into features while
retaining spatial-contextual relationships between patches.

Secondly, the framework has a deep learning regressor to
infer RNA-seq from the compressed features. Experiments
on the publicly available TCGA-HNSC dataset for the pre-
diction of 10 oncogenes showed that the proposed method
outperforms the conventional method. We provided inter-
pretability through activated pathways and activation maps
that will serve as a tool for biologists to understand the
black-box deep learning model. In future work, we will test
the proposed method for more cancer types and enhance
biological interpretability.
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