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Abstract—Fine motor movement is a demonstrated
biomarker for many health conditions that are especially
difficult to diagnose early and require sensitivity to change
in order to monitor over time. This is particularly relevant
for neurodegenerative diseases (NDs), including Parkinson’s
Disease (PD) and Alzheimer’s Disease (AD), which are
associated with early changes in handwriting and fine motor
skills. Kinematic analysis of handwriting is an emerging
method for assessing fine motor movement ability, with data
typically collected by digitizing tablets; however, these are often
expensive, unfamiliar to patients, and are limited in the scope
of collectible data. In this paper, we present a vision-based
system for the capture and analysis of handwriting kinematics
using a commodity camera and RGB video. We achieve
writing position estimation within 0.5 mm and speed and
acceleration errors of less than 1.1%. We further demonstrate
that this data collection process can be part of an ND screening
system with a developed ensemble classifier achieving 74%
classification accuracy of Parkinson’s Disease patients with
vision-based data. Overall, we demonstrate that this approach
is an accurate, accessible, and informative alternative to
digitizing tablets and with further validation has potential uses
in early disease screening and long-term monitoring.

Clinical relevance— This work establishes a more accessible
alternative to digitizing tablets for extracting handwriting
kinematic data through processing of RGB video data captured
by commodity cameras, such as those in smartphones, with
computer vision and machine learning. The collected data has
potential for use in analysis to objectively and quantitatively
differentiate between healthy individuals and patients with NDs,
including AD and PD, as well as other diseases with biomarkers
displayed in fine motor movement. The developed system has
potential applications including providing widespread screening
systems for NDs in low-income areas and resource-poor health
systems, as well as an accessible form of disease long-term
monitoring through telemedicine.

I. INTRODUCTION

The current diagnostic process for neurodegenerative dis-
eases (NDs), such as Alzheimer’s Disease (AD) and Parkin-
son’s Disease (PD), is complex and taxing on patients. The
diagnostic process involves multiple specialists relying on
their judgment and leveraging a variety of approaches such
as mental status exams [1], cognitive assessment [2], and
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brain imaging [3] to build a case and rule out alternative
causes for symptoms. This process is often delayed two to
three years after symptom onset and takes several months to
reach a conclusion [4]. Because of these barriers to diagnosis,
up to 50% of patients with NDs are not diagnosed during
their lifetime [5]. Even for patients who receive a diagnosis,
an accurate conclusion is not guaranteed; studies have shown
that the clinical diagnostic process for NDs is typically only
75-80% accurate [6].

Fine motor movement has been demonstrated as a
biomarker, or measurable indicator of disease presence, for
NDs, including AD and PD [7]. Quantification and kinematic
analysis of fine motor movements has applications for pro-
viding early screening assessments to improve and optimize
the diagnostic process, as well as monitoring change over
time that for long-term monitoring and assessing treatment
response [7]. Moreover, kinematic analysis of fine motor
movements is applicable to assessing a variety health con-
ditions with biomarkers displayed in fine motor movement,
including strokes [8] and early developmental disorders [9],
as well as depression and anxiety [10].

Handwriting tasks are commonly used for assessing fine
motor movement ability, with specific tasks including tracing
of Archimedean spirals and cursive ‘I's and ‘e’s, as well
as writing of words and short sentences [7]. During these
movements, the pen’s position is tracked, which can be used
to compute kinematic values of speed, acceleration, and jerk
[7]. These kinematic features can be further analyzed to
produce measures of movement fluidity and fine motor skill
which can be used compare groups of people with different
health conditions and as supporting information for disease
state classification.

Currently, data for studies in this field are usually col-
lected by specialized digitizing tablets [7]. These digitizing
tablets are expensive and can often be inaccessible in poor-
resource health systems or telemedicine settings due to
their cost. Furthermore, since the use of electronic pens
can be unfamiliar to patients, a time-consuming training
phase must be completed to acquaint patients with their use.
Digitizing tablets collect strictly pen position and pressure,
and are unable to capture other available data (e.g., hand
pose) that could improve assessment accuracy. By contrast,
a computer vision system to quantify these movements offers
a fast, easy-to-use, and more widely accessible screening
solution due to the pervasiveness of cameras in smartphones
and laptops. Furthermore, vision-based systems would be
able to collect more data than just pen position, acquiring
information about pen grip, arm pose, and compensatory

1309



movements with potential to improve assessment accuracy.
This data could be used to augment tablet-based systems
which collect accurate pressure data, or potentially to replace
them as a more accessible solution.

In this work, we propose a computer vision system to
capture handwriting kinematic information with commodity
cameras. We tested this system’s accuracy through direct
comparison to data produced by digitizing tablets during
common handwriting tasks. Since commodity cameras cap-
ture frames at a lower frequency (typically 30 or 60 Hz)
compared to sampling rate of digitizing tablets (typically
100 Hz), we investigated the viability of lower-frequency
kinematic data for ND screening assessments using machine
learning. To achieve this, we down-sampled the PaHaW
dataset of handwriting movements captured by a digitizing
tablet and trained classifiers on the resultant information to
assess their accuracy.

II. MATERIALS AND METHODS
A. Materials

The primary experimental objectives were assessing ac-
curacy of extracted kinematic data from videos and classi-
fication accuracy of resultant assessments that can be made
based on this data.

To best determine accuracy and statistically assess the
developed computer vision-based system for kinematic data
extraction, handwriting tasks were simultaneously captured
in a video format by a smartphone camera and quantified by
a Wacom Intous Medium digitizing tablet. These synchro-
nized data streams enabled the comparison of handwriting
kinematics captured by the computer vision system and
digitizing tablet. This system is shown in Figure 1, consisting
of a digitizing tablet overlaid with a writing template and
connected to a laptop as well as a smartphone on a small
tripod. 214 handwriting movements were captured from a
single neurotypical test subject to demonstrate feasibility
of extracting kinematic information from videos. Measured
tasks included Archimedean spiral drawing (124 videos),
tracing of I’s and e’s (60 videos), and tracing of words (30
videos) on the PaHaW study writing template [11].

The PaHaW dataset consists of digitizing tablet data of 8
different handwriting tasks from 38 healthy controls (HCs)
and 37 PD patients (total 75 individuals) [11]. The collected
position data were utilized at the originally sampled at 100
Hz, typical of digitizing tablets, and also at down-sampled
frequencies of 30 and 60 Hz, which are typical of commodity
cameras. The resultant kinematic data were then filtered with
a Gaussian filter with a sigma value of 5.

B. Computer Vision Quantification of Fine Motor Movement

The computer vision data collection system consists of a
few different structures to extract handwriting information
from videos, primarily making use of a recurrent system for
determining pen position. The entire computer vision system
is outlined in Figure 2.

The central objective of the computer vision system for
quantifying fine motor movements, in addition to producing

Fig. 1.
videos and digitizing tablet quantification, enabling statistical comparisons
to assess accuracy of the vision-based system

Experimental setup to collect synchronized data from smartphone

vision-specific features, is to extract kinematic information
with accuracy comparable to that collected by digitizing
tablets. This requires pen tip x and y coordinates tagged with
timestamps.

1) Preprocessing: In the preprocessing stage, the video
frames are prepared for data extraction using thresholding,
contour detection, and key point selection, followed by a
perspective transform and capture of a pen template image.

To determine the location of the paper template, the
OpenCV adaptive thresholding function was used to detect
lighter regions of the image [12]. OpenCV contour detection
with default parameters was then applied to these thresholded
frames, and the largest contour detected was chosen as that
of the paper template [12]. With this contour, the OpenCV
polygonal approximation method with an epsilon value of
1% of contour arc length was used to identify the 4 corners
of the paper [12].

From the camera vantage point, this polygon would appear
trapezoidal or irregular when in reality it is a rectangle. To
correct for differences in camera perspective, OpenCV can
be used to calculate a perspective transform matrix, which
can then be used to transform the image into a top-down
view of the rectangular paper [13]. Lastly, a template image
of the pen is captured to be used for later feature matching
in the coordinate extraction [12].

2) Coordinate Extraction: The coordinate extraction
phase consists of tracking of the pen-tip using perspective-
transformed images of the paper template, using a recurrent
approach to produce region of interests for pen tip location.

Feature matching is used to determine a region of interest
for the pen in each frame based on the original capture
template image. The region of interest is then sharpened
using OpenCV’s detail enhance method, and blurred using
a median filter with a size of 11 [12]. OpenCV’s threshold
is then applied to increase contrast between the pen tip and
the background, followed by contour detection to outline the
pen tip geometry in the image and enable precise detection
of the tip [12].

With these extracted coordinate data and the known,
consistent capture rate of cameras, kinematic features such
as speed, acceleration, and jerk can be calculated. As the
next frame is processed, the previous position of the pen
and calculated kinematic information can be used to decrease
the search area for the pen tip with feature matching,
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1. Data Capture and Preprocessing

Thresholding
Contour Detection
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Perspective Transform
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Fig. 2.

2. Frame Analysis and Data Extraction

. 3. Outputs for Classification

Recurrent

Region of
Interest
Feature

Matching

Computer vision system for data extraction from videos, consisting of three sections: (1) preprocessing, (2) data extraction, and (3) outputs for

classification. This paper places particular emphasis on the preprocessing in section 1 and coordinate extraction with recurrent region of interest feature
matching algorithm in section 2C. Sections 2A and 2B have been investigated in a preliminary manner and will be investigated for future work.

implementing a recurrent region of interest feature matching
algorithm. This modification makes this tracking algorithm
less computationally expensive and also more accurate, as it
has a smaller search area and is less prone to single-frame
errors caused by vision jitter and varying lighting conditions.

3) Comparison to Digitizing Tablet: To assess accuracy
of kinematic data produced by the vision-based system, the
timestamps associated the with computer vision data were
matched in a pairwise fashion to digitizing tablet data with
the closest timestamp. The aligned time series data were then
used to calculate errors and determine accuracy of the vision-
based system.

Mean absolute error (MAE) for position was calculated
using the following formula across the entire length n of
each time series, where (x;,y;) represent digitizing tablet
coordinate data, and (7, y;) represent vision-based data:

1 — , /
MAE = n;\/@”i — )2 + (yi — y})? 1)

Kinematic features of speed, acceleration, and jerk were
calculated using symmetrical differences using the following
formulas:

V(@ix1 — 1)+ Yis1 — Yi-1)?
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C. Assessment of Vision-Based Data for Classification

The PaHaW dataset was used to demonstrate the potential
of vision-based data in discriminative ND classification. The
collected coordinate information in the dataset was down-
sampled from the 100 Hz collected by digitizing tablets to 30
Hz and 60 Hz, typical frame rates produced by cameras. The
adjusted data were then used to calculate kinematic features,
including speed, acceleration, and jerk. A total of 176
derived features were produced, including mean, minimum,
maximum, standard deviation, and number of extrema for
profiles of each kinematic feature during a handwriting task.
These features were then tested for statistical significance
using t-tests to produce the final feature set, consisting of the
features with p-values less than 0.10 for each data capture
rate.

An ensemble classifier, consisting of a neural network
[14], support vector machine [15], and random forest [15]
was trained on these data using 10-fold cross validation [14]
to prevent overfitting. Each machine learning structure casts
a prediction vote for the patient, and the outcome with the
most votes (PD or HC) is chosen.
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Fig. 3. Relative comparison of our computer vision-based data collection system to digitizing tablet control. Demonstrated by overlaid graphs of extracted
kinematic features in an Archimedean spiral and word writing task: (A) Pen tip position (B) Pen tip speed (C) Pen tip acceleration (D) Pen tip jerk. Graphs
B-D display narrow 95% confidence intervals. Note the slight position drift in the word writing task, which is due to the pen’s increasing distance from

the camera.

III. RESULTS
A. Computer Vision Fine Motor Kinematic Data Extraction

Quantitative comparisons of the vision-based system for
quantifying fine motor kinematic data from videos to the
digitizing tablet are summarized in Tables II and I. Most
important to note are the position MAEs, which are less
than 0.5 mm for both spirals (n=124) and writing (n=90).
Furthermore, the speed and acceleration MAEs were under
1.1% for spiral tasks (n=124), and under 2% for handwriting
tasks (n=90). Figure 3 shows a graphical comparison of these
kinematic features for representative Archimedean spiral and
handwriting tasks, demonstrating the nearly identical kine-
matic information captured by our computer vision approach
compared to the digitizing tablet.

TABLE I
ACCURACY OF VISION-BASED KINEMATIC DATA - SPIRAL
Data MAE % MAE 95% CI
Position 0.48 mm N/A +0.088 mm
x-coordinate 0.29 mm N/A +0.088 mm
y-coordinate 0.31 mm N/A +0.041 mm
Speed 1.54 mm/s 1.05% +0.169 mm/s
Acceleration | 0.93 mm/s? 1.08% | +0.177 mm/s2
Jerk 4.16 mm/s3 2.76% +0.837 mm/s>
TABLE II
ACCURACY OF VISION-BASED KINEMATIC DATA - WRITING
Data MAE % MAE 95% CI
Position 0.40 mm N/A +0.055 mm
x-coordinate 0.24 mm N/A +0.056 mm
y-coordinate 0.27 mm N/A +0.041 mm
Speed 2.39 mm/s 1.95% +0.286 mm/s
Acceleration | 1.88 mm/s? 1.78% | +0.399 mm/s?
Jerk 3.71 mm/s3 1.87% +0.924 mm/s3

B. Machine Learning ND Classification with Vision Data

The ensemble learning classification system accuracy was
assessed using data down-sampled to three rates of capture:
the tablet-collected 100 Hz, and down-sampled values of 60

and 30 Hz to simulate vision-based data. The findings are
shown in Table III.

An accuracy of 74% (n=75) was achieved with the 60
Hz capable of capture by many modern, accessible vision-
based systems, which is nearly identical to the 75% (n=75)
achievable with 100 Hz offered by digitizing tablet data and
very similar sensitivity and specificity values. Furthermore,
even at a capture rate of 30 Hz, which is attainable with
nearly all commodity cameras, an accuracy of 71% (n=75)
was achieved in distinguishing PD patients from HCs, with
slightly lower sensitivity at specificity values compared to
the higher frequencies.

TABLE III
ND ASSESSMENT PERFORMANCE BY DATA CAPTURE RATES
Frequency (Hz) | Accuracy | Sensitivity | Specificity
30 71% 75% 65%
60 74% 79% 70%
100 75% 80% 72%

IV. DISCUSSION

The results of this study demonstrate the viability of our
framework using commodity cameras, in particular those in
smartphones, to accurately quantify kinematic information of
fine motor movements with computer vision algorithms. The
significance of this is further compounded by the accuracy
achieved in classifying PD patients and HCs using data at
frequencies that can be captured by commodity cameras,
with accuracy and potential increased emphasis on sensitivity
enabling this tool to be used for widespread early screening
of NDs.

The vision-based aspect of this system, in combination
with modern widespread access to cameras with capability
of capturing these data in mobile phones and other de-
vices, make it a prime candidate to enable wider access to
ND screening, especially in lower-income populations and
resource-poor health systems. Furthermore, the system’s at-
home accessibility enhances long-term monitoring of dis-
ease state, including treatment effects, clinical deterioration,
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and disease progression, via telemedicine. This ease of use
also allows for larger-scale data collection of handwriting
movements of patients with NDs as well as HCs to develop
and improve our understanding of differences between these
groups and increase the accuracy of assessments.

In this paper, we have focused primarily on this data
extraction and analysis system’s uses for ND screening.
However, the framework for vision-based kinematic analysis
of fine motor movement is versatile and can be utilized
to screen for any health conditions in which biomarkers
are displayed in handwriting movements, including strokes,
early developmental disorders (e.g., dysgraphia), and arthri-
tis. An accessible and easy-to-use tool for assessing these
movements is a necessary step to better understand these
biomarkers’ significance in differentiating diseased patients,
while the resultant expedited optimized screening process has
potential to improve treatment outcomes for these conditions.

Digitizing tablets are capable of collecting both pen po-
sition and pressure data. Currently, vision based systems
are unable to collect high accuracy pressure data, which
has been shown to increase classification accuracy of NDs
by 5-10% when combined with kinematic features [11].
However, digitizing tablets are limited in their scope of
data collection with computer vision providing more types
of data collection. Computer vision systems are capable
of quantifying hand pose and body movements and also
classifying pen grip types, which have potential to improve
assessment accuracy and require further research to support
their use. For example, hand pose and pen grip type can
be quantified using Google’s MediaPipe library for hand
landmark detection [16].

V. CONCLUSION

In this study, we developed an accessible, vision-based
system for analyzing fine motor movements in handwriting
tasks to provide ND screening assessments. Our results show
that accurate quantification of fine motor movement kine-
matic features is possible with low-cost commodity cameras.
We further demonstrate that kinematic data sampled at fre-
quencies of commodity cameras is viable for distinguishing
between ND patients and HCs on the PaHaW data set, with
high sensitivity and specificity achieved in ND assessments.
This system has potential to increase ND screening access in
lower-income populations and resource-poor health systems,
provide a long-term disease monitoring solution through
telemedicine, and offer a quantifiable screening tool to sup-
port clinical diagnosis of NDs.

Future work primarily centers around data collection to
further test the accuracy of the vision-based system for
quantifying kinematic information. Data collection would
also allow for further testing of the significance of vision-
specific features such as pen grip and body pose during
writing, and exploring the estimation of pen pressure from
video data. Additionally, new data collection opportunities
would enable observing more complex handwriting tasks
such as the clock drawing test (CDT) which cannot be done
on a digitizing tablet and determining if higher sensitivity can

be achieved to improve this system’s utility as a screening
tool for NDs.
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