
  

  

Abstract— There is an urgent need to bring forth portable, 

low-cost, point-of-care diagnostic instruments to monitor patient 

health and wellbeing. This is elevated by the COVID-19 global 

pandemic in which the availability of proper lung imaging 

equipment has proven to be pivotal in the timely treatment of 

patients. Electrical impedance tomography (EIT) has long been 

studied and utilized as such a critical imaging device in hospitals 

especially for lung ventilation. Despite decades of research and 

development, many challenges remain with EIT in terms of 1) 

optimal image reconstruction algorithms, 2) simulation and 

measurement protocols, 3) hardware imperfections, and 4) 

uncompensated tissue bioelectrical physiology. Due to the inter-

connectivity of these challenges, singular solutions to improve 

EIT performance continue to fall short of the desired sensitivity 

and accuracy. Motivated to gain a better understanding and 

optimization of the EIT system, we report the development of a 

bioelectric facsimile simulator demonstrating the dynamic 

operations, sensitivity analysis, and reconstruction outcome 

prediction of the EIT sensor with stepwise visualization. By 

building a sandbox platform to incorporate full anatomical and 

bioelectrical properties of the tissue under study into the 

simulation, we created a tissue-mimicking phantom with 

adjustable EIT parameters to interpret bioelectrical interactions 

and to optimize image reconstruction accuracy through 

improved hardware setup and sensing protocol selections.  

 
Keywords— Electrical impedance tomography; bioelectrical 

phantom; simulation; image reconstruction; parametric 

optimization, sensitivity and selectivity analysis. 

I. INTRODUCTION 

At the wake of the COVID-19 global pandemic, it has 
become increasingly clear that the lack of readily deployable, 
portable, low-cost, point-of-care diagnostic and imaging 
instrument can significantly hinder the prompt diagnosis and 
treatment of affected patients. Conventionally, pulse oximetry 
is widely utilized as the palliative care option to indirectly 
check patient ventilation health in resource-limited setting, 
however the use of this device has been cautioned due to the 
fluctuating accuracy from motion artifacts, device-to-device 
variations, existing patient medical conditions (e.g. poor 
peripheral perfusion) [1]. Most importantly, respiratory 
functions of the lungs are critical organs being affected by 
COVID-19 viruses and must be the center of care and 
continuous monitoring. It is thereby imperative to have the 
proper imaging instruments readily available to track patient 
respiratory health. Electrical impedance tomography (EIT) [2] 
sensor is a highly promising imaging modality that is cost-
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effective, easy-to-operate and a potentially personalizable,  
wearable sensor, making it particularly useful in overcrowded 
hospital setting and resource-constrained healthcare 
environments.       

Historically, EIT has played a significant role in the 
clinical domain from monitoring physiological functions to 
diagnosing various diseases. Attributed to its unique ability in 
interacting with the dielectric properties of the human tissues 
to provide imaging contrast, EIT is a radiation-free imaging 
modality unlike its X-ray tomography counterpart. It’s non-
invasive, cost-effective, and has relatively smaller technology 
footprint compared to other medical imaging modalities. EIT 
has found favor in numerous medical imaging applications 
such as cranial imaging in newborns [3], lung monitoring [4]–
[6], hyperthermia treatment [7], pediatric lung disease 
diagnosis [8], breast imaging [9], brain imaging [10]. Its 
applicability has also been found in biotechnology sector to aid 
in cell culture studies and monitoring [11], [12] as well as In-
Vitro Diagnostics or Lab-on-Chip system development for 
single cell and biochemical pathway analysis [12].    

EIT operates on the principle of electrical conductivity 
contrast in the body. By injecting a non-perceptible, constant, 
sinusoidal current to a subject through surface electrodes, the 
boundary potentials are measured to reconstitute the resistivity 
distribution within the subject volume by using an optimal 
image reconstruction algorithm. Briefly, a ring of 
circumferential electrodes as few as 4 but up to 32 are 
commonly used to measure these potential voltages. There are 
many unique stimulation and measurement protocols available 
that aim to increase data volume [13] or content diversity via 
multi-frequency EIT [14]. Substantial efforts are made in EIT 
hardware improvement over the past few decades [14]–[16], 
however, desirable quality of image reconstruction remains to 
be challenging. The difficulties arise from having to solve an 
inverse problem in which it is non-linear, ill-conditioned and 
ill-posed in nature [17]. Because electric current tends to 
propagate volumetrically within a body and distribute non-
linearly, thus large variations in the body’s resistivity may only 
produce a small change in the surface measurements, and vice 
versa is also a challenge. For these reasons, high sensitivity has 
been difficult to achieve with increasing tissue depth. This is 
often made worse with effects such as: 1) imperfections in the 
electronic hardware and improper electrode contacts with the 
skin; 2) non-optimal measurement and stimulation protocols; 
3) 2D algorithmic calculation rather than 3D; 4) non-standard 
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anatomical and physiological models for tissue under analysis 
[18].  

Image reconstruction of EIT is commonly performed using 
EIDOR (an open source Electrical Impedance and Diffused 
Optical Reconstruction Software) [19]. Its finite element 
model approach has been the norm for decades to generate 
mesh networks, calculate the forward problem and solve the 
inverse problem via customizable library of generic algorithms 
[20]. Although it has been the go-to platform for exploring and 
implementing novel algorithms and parametric tryouts, there 
are many desirable features that are missing which would 
better aid in the improved understanding and implementation 
of EIT sensors for the target applications.  

In this paper, we introduce an alternative simulation 
platform that is based on the cell equivalent electrical circuit 
model of human tissues to simulate the biological phantom of 
interest. By building the phantom “cell-by-cell”, in which the 
phantom consists of interconnected circuits to represent each 
cell type, and collectively forming tissues and ultimately the 
physical attributes and properties of interest, we demonstrate 
that this bioelectric representation provides a more accurate 
response prediction from EIT sensor interrogation. By 
integrating MATLAB’s analytical engine with SPICE’s 
simulator, we formulated novel processes to evaluate EIT’s 
sensitivity and selectivity on a simplified phantom. We 
demonstrate a new simulation tool capable of realizing the 
following features even beyond EIT and applicable to any 
bioelectrical sensors.  

1) Modeling simple and complex dynamic physiological 

processes over time from pulsatile movements of blood 

vessels to transient motions of heart, or the lungs. 

 

2) Optimize EIT sensor for the appropriate biological 

targets through hardware and operation protocol 

adjustments based on bioelectrical response feedback 

from tissue model.  

 

3) Sensor detection sensitivity and selectivity visual 

maps showing specific regions of sensing strengths and 

vulnerabilities. 
 

4) More accurate prediction of imaging resolutions, limit 

of detection and reconstruction outcome that matches 

real-life measurements using our tissue model circuits.  
 

5) Customizable phantom features with tunable physical, 

and bioelectrical properties and degrees of complexity to 

accommodate/simulate for specific biological relevance. 

 

6) Visualization of the operation process in which both 

stimulation current and voltage distribution are shown 

dynamically with the phantom. 
 

 In section II of this paper, the methods to implement the 
bioelectrical phantom, simulation platform, sensitivity and 
selectivity analysis are explained. Simulation performance is 
also evaluated through selected experiments on two key EIT 
parameters in this section. Section III covers the reporting and 
discussion of the simulation’s performance outcomes. The 
conclusion and outlook are presented in section IV.  

II. METHODS 

The success of EIT as a biological imaging device comes from 

the intrinsic electrical properties of cells and tissues. Since the 

unique composition of each cell type renders unique dielectric 

responses (e.g. impedance magnitude and phase) upon 

electrical current stimulation, we thus take a circuit analysis 

approach to evaluate the collective responses of the resultant 

tissue-equivalent circuits build from networks of single cells. 

In this work, we chose a cross-sectional geometry of a human 

upper arm with major tissue constituents or features in 

simplified shapes and sizes as a demonstration of proof-of-

concept. Precise anatomical geometry can be fine-adjusted 

and populated by our algorithm at the expense of simulation 

time. A circumferential electrode arrangement on the surface 

of the phantom in even numbers was chosen with a 4-point 

Kelvin configuration for measurement and stimulation. At 

any given time, a set of two electrodes inject prescribed 

current while another prescribed set of two differential 

electrodes measure the voltages. 

A. Bioelectrical Phantom 

The fundamental constituent of the phantom was a 
simplified single cell equivalent circuit model consisting of an 
extracellular fluid resistor RECF in parallel with resistance from 
a membrane capacitor CM in series with an intracellular fluid 
resistor RICF (Figure 1a). In the tissue space of the same cell 
type, this single bioelectrical cell was arranged and networked 
to form a local impedance grid in 2D or a voxel in 3D (Figure 
1b). The dimension and shapes of these tissue-representing 
networks were constructed according to the boundary 
specifications in the MATLAB program. The values for these 
electrical elements were specific to each cell type, and they are 
widely reported in literature [21].  

Four types of tissues were represented in our 3D phantom 
example of an upper arm cross-section (Figure 2a). As shown 
in Figure 2b, the subcutaneous fat tissue is shown in blue 
surrounding muscle tissues in red. Three shapes and sizes of 
muscles were configured to mimic their anatomical diversity 
in the body. In the core of the phantom is the bone tissue in 
green. Two arteries in maroon are positioned between muscles 
and fat, to highlight one of the smallest tissue types presented 
for detection. The composition of this phantom was 
customizable and automatically generated. They set the basis 
for determining the resolution, sensitivity and specificity of the 
EIT sensor in later section. A series of equidistant square 
electrodes were placed on the surface of the phantom with 
relatively defined size and position with respect to the 3D 
model. In our simulation, a total of 20 electrodes was chosen 
with 5 on each side of a 20 x 20 x 15 grid-size phantom. The 

Figure 1. (a) Simplified cell equivalent circuit. (b) 3D phantom grid with 
four types of tissue features where each unit is an impedance voxel.  
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default stimulation and measurement protocol follow that of 
the Neighboring method (Figure 3a), in which an adjacent 
electrode pair injected current while the other adjacent 
electrode pairs measured voltage in a rotational sequence until 
all remaining electrode pairs take a turn (Figure 3b). After 
which, the current injection electrode advanced to the next pair 
to begin the next frame of measurement. One round of 
completed current rotation can thus provide a total of 5100 
measurements (20 current injections x 17 voltage readings x 
15 planes). Another popular measurement configuration for 
comparison is the Opposite method, in which current is applied 
via opposite facing electrodes while voltages are measured by 
adjacent electrode pairs. An amplitude of 1 mA at 10 kHz 
frequency was used as the input for the stimulation. The 
selection of stimulation parameters influenced the analysis of 
responses between tissues, and thus vital in multi-frequency 
EIT implementations.  

B. Simulation Platform 

The simulation strategy was based on the Bio-Z impedance 
model realized using the MathWorks’ MATLAB program and 
SPICE simulation toolkit developed previously [22]. 
Simulation input parameters such as phantom geometry, voxel 
conductivities, spatial arrangement of tissues and electrode, 
stimulating current amplitude, frequency and etc. were 
managed and initialized in the MATLAB program. MATLAB 
generates a circuit netlist that includes the connection between 
the resistors, capacitors, and electrical stimuli as specified by 
the 3D impedance model in each simulation. Subsequently 
LTSpice simulator from Analog Devices was invoked to 
perform the circuit simulations. The outcome is the calculation 

of the dielectric responses of the phantom using the specified 
current source according to the input parameters.  The resultant 
node voltage V(x,y,z,f), current distribution I(x,y,z,f) and grid 
impedance Z (x,y,z,f) at the prescribed frequency in each 3D 
voxels were recorded and outputted in a multi-dimensional 
array for downstream calculation and analysis in MATLAB.   

 

C. Sensitivity & Specificity Analysis 

An impedance map of the 3D phantom was calculated from 
all constituting voxels in the grid network. In order to evaluate 
how sensitive the EIT sensor is to any impedance variation 
(e.g. as a result of user-defined anatomical deformation), we 
devised a sensitivity analysis process to computationally and 
graphically indicate regions of strongest and weakest changes 
for each frame of voltage measurements. In this study, we 
defined an impedance image 𝑅(𝑖, 𝑗, 𝑙)  of the phantom based on 
the number of voxels 𝑁 (20x20x15), and let 𝑖 is an index in x-
axis, 𝑗 is an index in y-axis, 𝑙 is an index in z-axis with 𝑖, 𝑗, 𝑙 
initial value of 1 increasing towards 𝑁𝑖, 𝑗 =21 and 𝑁𝑙 =15. We 
then defined a reference impedance image for each voxel 
having an arbitrary but equal impedance magnitude of 10 
ohms, represented as 

 𝑅(𝑖, 𝑗, 𝑙)𝑟𝑒𝑓 = 10𝛺 ∀ 𝑖 = 1:𝑁𝑖, 𝑗 = 1:𝑁𝑗, 𝑙 = 1:𝑁𝑙.    

The differential voltage measurement 𝑉𝑒(𝑘, 𝑠) from each 
pair of electrodes during an EIT operation is set up for current 
electrode pair 𝑘 which ranges from 1 to all current injections 
of 𝑁𝑒𝑙𝑒𝑐 =20 and 𝑠 for voltage measurement which ranges 
from  1  to all voltage measurement of  𝑁𝑒𝑙𝑒𝑐 − 3=17. Thereby, 

a voltage vector 𝑉𝑒⃑⃑ ⃑⃑  can be obtained to represent all stimulation 
measurement protocol as: 

𝑉𝑒⃑⃑ ⃑⃑ = ⟨𝑉𝑒(𝑘, 𝑠) |𝑘=1..𝑁𝑒𝑙𝑒𝑐,𝑠=1..𝑁𝑒𝑙𝑒𝑐−3⟩ = ⟨𝑉𝑒(1,1) , … , 𝑉𝑒(20,17)⟩ 

 For the sensitivity analysis of each voxel, we implemented 
a running operator that reduced the impedance value of an 
impedance map under test 𝑅(𝑖, 𝑗, 𝑙)𝑛,𝑚,𝑝  one at a time to 

simulate a state of change for each frame of measurement 
comparing to the constant reference map 𝑅(𝑖, 𝑗, 𝑙)𝑟𝑒𝑓 . This 

running comparison process provided an individual sensitivity 

map  ∆𝑉𝑒̅̅ ̅̅ ̅
 𝑘,𝑠(𝑛,𝑚, 𝑝) based on the subtractive voltage 

difference between the altered and constant reference having 
the form of:  

 ∆𝑉𝑒̅̅ ̅̅ ̅
 𝑘,𝑠(𝑛,𝑚, 𝑝) = 𝑉𝑒(𝑘, 𝑠)𝑛,𝑚,𝑝  

− 𝑉𝑒 (𝑘, 𝑠)𝑟𝑒𝑓 

∀ 𝑛 = 1:𝑁𝑖,𝑚 = 1:𝑁𝑗, 𝑝 = 1:𝑁𝑙 

Where 𝑅(𝑖, 𝑗, 𝑙)𝑛,𝑚,𝑝 = {
1𝛺       𝑖 = 𝑛, 𝑗 = 𝑚, 𝑙 = 𝑝
10𝛺    𝑖 ≠ 𝑛, 𝑗 ≠ 𝑚, 𝑙 ≠ 𝑝

 

Therefore, the individual sensitivity  ∆𝑉𝑒̅̅ ̅̅ ̅
 𝑘,𝑠(𝑛,𝑚, 𝑝)  

represents the voltage difference for current source 𝑘 and 
voltage measurement 𝑠 for any impedance changes at location 
(𝑛,𝑚, 𝑝). These were calculated then color-coded to visually 
demonstrate the effect of the impedance change of a voxel on 
the plotted electrode configuration.  

Following a full cycle of the stimulation and measurement 
protocol on the phantom, all individual sensitivity images were 
integrated to render a combined impedance map defined as:  

 ∆𝑉𝑒̅̅ ̅̅ ̅̅ (𝑛,𝑚, 𝑝) = ‖𝑉𝑒⃑⃑ ⃑⃑ 
𝑛,𝑚,𝑝 − 𝑉𝑒⃑⃑ ⃑⃑  𝑟𝑒𝑓‖  

∀ 𝑛 = 1:𝑁𝑖,𝑚 = 1:𝑁𝑗, 𝑝 = 1:𝑁𝑙 

Figure 3. (a) Two stimulation and measurement protocols: the 

neighboring method and the opposite method. (b) The neighboring 

method is shown being applied with current schematically diffuse 
throughout the phantom feature in a 2D plane. 

Figure 2. (a) 2D schematic of the upper arm cross section with major tissue 
constituents. (b) 2D plane view of the phantom with 4 types of simplified 
geometry of tissue. Intensity indicates conductivity in mho/m 
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As a result, the combined sensitivity  ∆𝑉𝑒̅̅ ̅̅ ̅̅ (𝑛,𝑚, 𝑝)  represents 
the norm of the voltage difference under all current sources 
and voltage measurements for an impedance variation at 
location (𝑛,𝑚, 𝑝). Similarly, impedance selectivity of the 
integrated images was also calculated according to:  

 ∆𝑉𝑒̅̅ ̅̅ ̅̅
𝑠𝑒𝑙(𝑛,𝑚, 𝑝) = ‖𝑉𝑒⃑⃑ ⃑⃑ 

𝑛,𝑚,𝑝 − 𝑉𝑒⃑⃑ ⃑⃑ 
𝑖,𝑗,𝑙‖   

∀ 𝑛 = 1:𝑁𝑖,𝑚 = 1:𝑁𝑗, 𝑝 = 1:𝑁𝑙 

This analysis measured the difference of voltage change for an 
impedance change at a voxel (𝑛,𝑚, 𝑝) relative to all other 
voxels. Together, these master maps served as the templates to 
calculate regional sensitivity and selectivity of EIT under 
various parametric variations, phantom aberrations, or 
hardware imperfections. With color-scaling, they allowed for 
graphical identification of areas having the highest detection 
resolution and detectability.  

D. Parametric Optimization Studies 

To demonstrate versatility, both individual and integrated 
impedance sensitivity maps were calculated and rendered for 
phantoms with both uniform and non-uniform distribution of 
features. The non-uniform features tested took the form of 
user-defined shapes, sizes, and electrical properties such as 
voxel impedance, and different locations in the phantom. 
These case studies examined the current and voltage 
distribution over a series of expected (uniform) and intentional 
(non-uniform) scenarios in which the impedance sensitivity 
map must hold true. Therefore, these parametric adjustment 
investigations are idyllic to serve as calibration mechanism for 
the testing of new EIT parameters, phantom features, hardware 
implementation, and etc. In this report, we selected the 
following two cases to demonstrate: 1) the effect of phantom 
feature location has on overall EIT sensitivity; and 2) a 
comparison between two common stimulation and 
measurement protocols, namely the Neighboring Method and 
the Opposite Method.  

 

III. SIMULATION RESULTS 

For a given phantom of varying degrees of feature 
homogeneity, complexity, and density, the ability to track the 
behavior of the injected current and measured voltage 
reflective of the phantom feature influence greatly aids in the 
evaluation of EIT sensing performance. We selected a 20-
electrode set to generate a reasonable visualization. However, 
any number of electrodes can be implemented. And as the 
electrode number increased, the distance between each 
electrode automatically decreased, leading to lower voltages 
as the measurement electrodes became closer to the current 
electrodes. The grid size of our phantom was fixed throughout 
the study. However, it is a programmable parameter in which 
the denser the grid size can contribute to an increase in 
effective spacing between the electrodes, reflected as an 
increase in resolution that enhances the voltage drops. 

Figure 4 displays an instantaneous image of the voltage 
and current distribution at a fixed current stimulation location. 
It’s a snapshot of a full, dynamic visualization that follows the 
movement of the electrode rotation sequence as the EIT sensor 
operates in a counterclockwise direction. The node voltage of 
each voxel is intensity-mapped and displayed for intuitive 

readout of the voltage variation as a result of the phantom 
features within. The magnitude of the current is represented by 
the size of the arrows as they travel diffusively across all 
voxels. Current magnitude is greatest in regions with lowest 
conductivity between the source and sink electrode, and 
weakest as the current moves further away or run into features 
of large impedance. This behavior can be better visualized in 
a 2D plane as illustrated in Figure 4c-d.  

The four tissue types illustrated in Figure 2 are 
incorporated in this simulation but not shown in Figure 4. 
However, instantaneous analysis of these distribution maps 
was able to show altered current paths due to the increased 
impedance from the fat tissue, or increased voltage drop due 
to closer proximity of the electrodes to arteries or muscles.  

A. Sensitivity & Specificity Performance 

Impedance map of the phantom image had been calculated 
individually ( ∆𝑉𝑒̅̅ ̅̅ ̅

 𝑘,𝑠) for each current stimulation location k 

and its full frame of voltage measurement s. The result is an 
impedance distribution with magnitude intensity color-coded 
to demonstrate stepwise tracking of variations within the 
phantom during EIT operation. This is illustrated by Figure 5 
where nine selected combination of stimulation and 
measurement pairs are represented. The added dash-lines 
highlights the paths of greatest impedance perturbation or 
sensitivity between the electrode pairs. It is evident that when 
the measurement electrodes were closest to the injected current 
electrodes, highest zones of sensitivity occurred near or 
between the respective electrodes due to the dense current flux. 
And lowest sensitivity results when they were furthest away 
(e.g.  ∆𝑉𝑒̅̅ ̅̅ ̅

 5,10 ). These sensitivity paths were also affected by 

the features (of varying impedances, shapes, sizes, etc.) in 
between the stimulation and measurement electrode pairs.  

Individual sensitivity map is advantageous in the stepwise 
analysis of the EIT sensing process. Conversely, an integrated 
map presents a collective, practical assessment of the 
phantom’s sensitivity to EIT’s bioelectrical interrogation. As 

Figure 4. (a) 3D Node voltage and (b) injected current distribution in a 

non-uniform phantom. (c) 2D top view of the differential voltage and (d) 
current distribution of neighboring pair of electrodes. Arrow size 

indicates magnitude as it passes through each voxel.    
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shown in Figure 6a, for a given square phantom, the resultant 
outcome of evaluating each pixel’s sensitivity to an impedance 
perturbation can be summarized in one ultimate combined 
image. This map intuitively highlights the most and least 
favorable regions for detecting the greatest changes under the 
prescribed EIT protocol. Not surprisingly, for a square 
phantom, sharp corners presented the densest current flux, 
hence the highest sensitivity as indicated by green-yellow 
gradient. Second highest regions can be found near the 
electrode-phantom interface. Due to the diffusive nature of 
applied electric current, the Neighboring stimulation method 
produced weak depth penetration, which is a characteristic 
consistent with wide literature reports. However, this 
sensitivity map demonstrated a gradient, progressive transition 
from strong to weak spots in the phantom features. 
Furthermore, a combined selectivity map was also calculated 
and produced as shown in Figure 6b to accompany the 
sensitivity map. It is particularly advantageous in showing 
feature distinction during multiple simultaneous impedance 
changes occurring in the phantom. Hence, knowledge 
pertaining to how selective an area is on the phantom to EIT 
detection can be visually ascertained. 

B. Uniform vs Non-Uniform Phantoms 

There are many advantages to employing uniform or 
simplified phantom at the lower expense of computation 
complexity and speed. In our simulation, phantom of uniform 
feature served to validate the expected operation and 
performance outcome of the EIT under set parameters. The 2D 

referenced phantom feature layout in Figure 7a was subjected 
to both individual and integrated sensitivity and selectivity 
analysis in our simulation. The combined outcome is shown in 
Figure 7b in 2D for clarity (selectivity map is not shown). The 
overall impedance is lowered compared to that of the uniform 
phantom to account for the reduced conductivities of the 
features. Tissue contrast plays a key role in creating 
distinguishable features on the simulation. The subcutaneous 
fat for an instance surrounded other tissues and carried a 
relative low conductance of 0.04 mho/m. When the 
stimulating current reached the highly conductive muscle 
tissues (0.3 mho/m), a drop in tissue impedance aided in the 
sharp transition from a low current to a higher current flow, 
hence, producing a contrast at their interfacial boundary. The 
same distinction can be made with the arteries which also had 
a conductance (0.7 mho/m) higher than that of the fat tissue. 
Even with relatively small dimensions, the feature contrast 
was clear.  

However, tissue depth became the limiting factor (under 
the Neighboring method) for all the tissue types. The bone 
being the innermost tissue possessed the weakest sensitivity, 
yet with the provision of a tissue contrast such as that provided 
by the connective fat, edges of the bone, oddly-shaped 
muscles, small-sized arteries that extended further in depth can 
still be calculated and visually identified. This finding showed 
that importance of having the right tool to elucidate the 
bioelectrical interactions between tissues can lead to better 
understanding and new implementation.   

C. Parametric Evaluations 

A myriad of variables influences the sensitivity of EIT. To 

identify and evaluate these variables and their contribution to 

sensor performance, a series of experiments were performed 

using our simulation platform. Under a more analytical 

setting, we varied the location of a single object within a 

uniform phantom under the same EIT protocol as described 

so far and evaluated how its location in relation to the 

electrodes contribute to the sensitivity outcome. Figure 8a 

shows a 40-electrode set around a 40 by 40 grid with their 

location numerically marked on all sides. As the blue square 

object moved toward location 25 (upper edge), voltage 

measurements from all electrodes at all object locations were 

plotted simultaneously (Figure 8b) to track any signs of 

voltage deviation. As highlighted by the blue box in the 

figure, selective locations of the objects toward the upper 

Figure 6. (a) Combined Impedance sensitivity image  ∆𝑉𝑒̅̅ ̅̅ ̅̅ (𝑛,𝑚) and (b) 

impedance selectivity image  ∆𝑉𝑒̅̅ ̅̅ ̅̅
𝑠𝑒𝑙(𝑛,𝑚) for a uniform phantom 

without any internal features under the neighboring stimulation and 

measurement protocol. 

Figure 7. (a) Phantom feature as conductivity layouts in 2D showing 4 

types of tissues. Intensity bar not shown, refer to figure 2b. (b) Simulated 

combined sensitivity image on the phantom feature shown in (a). 

Figure 5. Selected 2D individual impedance sensitivity images for 

various current stimulation electrode pair locations k in (𝑉𝑒𝑘,𝑠). And 

voltage measurement location s. Dotted lines highlight the connectivity 

of impedance in relation to current to voltage electrode pair positions.  
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edge rendered proportional increases in differential voltage 

measured by the rotating surface electrodes. As a result, both 

EIT sensitivity and selectivity increased exponentially as the 

object move closer towards the electrodes (Figure 9). This is 

true for different stimulation and measurement protocols that 

we tested. Other similar experiments concerning the effects of 

the object/feature geometry, dimension, number, and 

electrical property have been equally illuminating but not 

discussed in this report.  

Two popular stimulation and measurement protocols are 

the Neighboring and Opposite method. They are conversely 

related to each other and can provide subjective insights about 

the phantom features. To evaluate their contribution to 

sensitivity, we subjected the referenced phantom (Figure 2) to 

these two modes of EIT operation, and the combined 

sensitivity maps are shown in Figure 10a-b. Their intensity 

values were normalized with respect to the maximum 

intensity value of each map, allowing better comparison of the 

center sensitivity of the Opposite mode relative to the 

Neighboring mode. The current distribution maps in Figure 

10c-d illustrates the current paths in which these two 

protocols undertook to navigate around the complex features 

and interact under their geographical and electrical 

influences. The magnitude of current paths visualized by 

arrow sizes were reflective of their interactions with the four 

tissue types. The Opposite Method functions to inject current 

through the depth of the phantom, and hence capable of 

providing more contrast and clarity to the features in between. 

As demonstrated by the comparison 2D sensitivity maps in 

the figure, boundaries between the fat and other lower 

conductance tissues became more identifiable. Selective 

regions between these two sensitivity maps were used to 

calculate the exact improvement. At the center, our simulation 

showed for this specific phantom, just changing the protocol 

alone can improve EIT sensitivity by 36%. This simulation 

tool can easily accommodate other stimulation and 

measurement protocols such as the adaptive or cross pattern.  

 

IV. CONCLUSION 

We presented a bioelectrical simulation platform for the 
performance evaluation, and parametric optimization of the 
EIT sensor using a non-finite element model-based analysis 
approach. Adapting the complete cell equivalent circuit model 
to build larger and more complex tissues and organ systems, 
we demonstrate a physiologically relevant platform capable of 
producing prediction based on real-life bioelectrical 
interactions in the body. Thus, allowing 1) more accurate 
estimation by EIT sensors in general; and 2) dynamic 
processes such as pulsatile blood vessels or beating heart and 
other transient physiological processes to be modeled simply 
and accurately; and 3) tailored design and tuning of the EIT 
sensor for specific biologic targets. Utilizing this bioelectrical 
platform, we constructed a new set of sensitivity and 
selectivity algorithms to visually inspect parameters and 
variables that contribute to EIT’s sensing strengths and 
weakness without influence of image reconstruction 
algorithms. With the option of performing stepwise or 
comprehensive simulation on a programmable bioelectrical 
phantom, we bring forth a more accurate and illuminating EIT 
simulation tool capable of predicting the performance of the 
sensor under desired modes of operation, parameters of 
function, and variables of experimentation for the diverse 
purpose of EIT applications.   

Figure 9. (a) Sensitivity and (b) selectivity of the experiment in Figure 9 

as a function of object changing locations. 

Figure 8. (a) Reference image 𝑅(𝑖, 𝑗)𝑟𝑒𝑓 showing a square feature of fixed 

size but varying in location (towards the upper edge) in the phantom. 

Each feature has a 10% lower relative impedance from the background 
(yellow). (b) Differential voltage measurement for this reference image 

at different locations around the phantom during current injection 

(indicated by different color solid lines). 

Figure 10. Combined sensitivity image with normalized values for the 

non-uniform phantom under (a) Neighboring and (b) Opposite stimulation 

and measurement protocol. (c) and (d) shows their corresponding current 
distribution on the inner features of the phantom.     
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