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Abstract— Auditory attention detection (AAD) seeks to de-
tect the attended speech from EEG signals in a multi-talker
scenario, i.e. cocktail party. As the EEG channels reflect the
activities of different brain areas, a task-oriented channel se-
lection technique improves the performance of brain-computer
interface applications. In this study, we propose a soft channel
attention mechanism, instead of hard channel selection, that
derives an EEG channel mask by optimizing the auditory
attention detection task. The neural AAD system consists of a
neural channel attention mechanism and a convolutional neural
network (CNN) classifier. We evaluate the proposed framework
on a publicly available database. We achieve 88.3% and 77.2%
for 2-second and 0.1-second decision windows with 64-channel
EEG; and 86.1% and 83.9% for 2-second decision windows with
32-channel and 16-channel EEG, respectively. The proposed
framework outperforms other competitive models by a large
margin across all test cases.

I. INTRODUCTION

Humans have the ability to distinguish between speakers
and to pay selective attention to one speaker in a multi-
talker scenario, i.e., cocktail party [1]. However, hearing
aids users often experience difficulty of following a target
speaker in the presence of noise and other competing speech
sources [2]. Are we able to equip the hearing aids with the
human ability of selective attention? Recently, neuro-steered
hearing prostheses are studied to produce a better experience
for people with hearing loss, in which auditory attention
is decoded from recordings of brain activity and used to
enhance the speech separation for the attended speaker.

Among the brain signals for auditory attention detection
(ADD), such as electrocorticographic (ECoG) [3], mag-
netoencephalography (MEG) [4] and electroencephalogram
(EEG) [5], EEG is a more realistic option for brain-
computer interface (BCI) applications, because it’s cheaper,
non-invasive and easier to use. The techniques for EEG-
based auditory attention detection can be grouped into linear
and non-linear decoders [6].

Linear decoders have been well studied [5], where EEG
responses are used to approximate the envelope of the speech
attended by listeners, that is then compared with the original
speech stimulus to reveal the attended or unattended speaker

1Enze Su, Siqi Cai, Peiwen Li and Longhan Xie are with Shien-Ming Wu
School of Intelligent Engineering, South China University of Technology,
Guangzhou, Guangdong Province, China. Longhan Xie is the correspond-
ing author. enzesu@hotmail.com, elesiqi@nus.edu.sg,
lintean@qq.com, and melhxie@scut.edu.cn

2Haizhou Li and Siqi Cai are with the Department of Electrical
and Computer Engineering, National University of Singapore, Singapore.
haizhou.li@nus.edu.sg

3Haizhou Li is also with Machine Listening Lab, University of Bremen,
Germany.
† Equal contribution

in a cocktail party scenario. Specifically, the reconstructed
speech envelope from the cortical responses to a mixture of
speakers is dominated by the salient spectral and temporal
features of the attended speaker [3]. However, the correlation
between the reconstructed and the attended envelope is fairly
low [7]. A possible explanation is that the human auditory
system is inherently non-linear [8] and the linear approach is
probably not the best way to model the complex and dynamic
nature of the brain [9]. Furthermore, the speech envelope
reconstruction algorithm is not systematically optimized,
e.g., jointly trained with the classifier, for auditory attention
detection.

Recently, non-linear decoders have been studied to under-
stand the complex and highly non-linear nature of auditory
processes in the human brain, that show superior perfor-
mance to linear decoders [6], [7], [10], [11], [12]. In this
paper, we follow the CNN-based non-linear approach [10],
[11], [12] with a particular focus on low-latency settings.
We note that the placement positions of electrodes reflect
the activities of the related brain areas. Furthermore, some
EEG channels are more informative than others in terms
of informing the decision-making process in the brain [13],
[14]. At the same time, the distribution of effective channels
may vary from subject to subject.

We propose a channel attention mechanism that predicts a
channel mask on the fly. The channel mask corresponds to a
spatial map of the EEG electrodes, that gives a differentiated
weight to each of the EEG channels. An element in the mask
is a continuous value, as opposed to on-off channel selection,
that modulates the contribution of each EEG channel for
optimal auditory attention performance. Such a channel mask
may vary with the attended speaker, the speech content, the
acoustic environment, the listening subjects, and so on. The
question is how to devise a mechanism that dynamically
predicts the mask according to each speech-EEG pair.

As far as we know, this is the first study on a channel
attention mechanism for EEG-based auditory attention detec-
tion. The rest of the paper is organized as follows. Section
II presents the channel attention mechanism and the CNN
classifier. Experimental setup and the results are summarized
in Section III. Finally, Section IV concludes the study.

II. AUDITORY ATTENTION DETECTION WITH CHANNEL
ATTENTION

We study a CNN classifier with channel mask (CM) for
AAD, which is referred to as CNN-CM hereafter, as illus-
trated in Fig. 1. The CNN-CM neural architecture consists
of a channel attention mechanism and a CNN classifier.
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Fig. 1. The proposed CNN-CM neural architecture for auditory attention detection, which is trained as a whole with two output nodes for two attended
speakers. (a) Overall architecture; (b) Channel attention mechanism that modulates the input multi-channel EEG signals with respect to speaker A.

During training, the CNN-CM network takes multi-
channel EEG signals, speech envelopes A and B as input,
and the attention labels as the supervisory signals. The
channel attention mechanism is trained to generate the mod-
ulated EEG signals via an attention mask, while the CNN
classifier is trained to make a detection decision. Both the
channel attention mechanism and the CNN classifier are
jointly trained for optimal attention decisions.

A. EEG Channel Attention

Humans pay selective attention in many everyday situa-
tions, such as auditory attention in cocktail party scenarios.
The channel attention mechanism is motivated by such hu-
man ability, that seeks to adaptively select important features
in machine translation [15], image classification [16], [17]
and caption generation [18]. In this study, we would like to
dynamically assign weights to channels to reflect the contri-
butions of individual EEG channels for AAD. The channel
attention mainly has two properties, 1) it explicitly models
the correlation between EEG responses and speech stimuli,
and 2) adaptively adjusts the weights of EEG channels.

1) Feature representation: The cosine similarity is chosen
to measure the relationship between the speech stimuli and
EEG responses [19] in this study, which does not involve
any learning parameters. The cosine similarity between two
time series, x = {xn}N1 and y = {yn}N1 , is defined as,

similarity(x, y) =
∑N

n=1 xnyn√∑N
n=1 x

2
n

√∑N
n=1 y

2
n

(1)

Let xA be the speech envelope, i.e., the auditory stimulus,
from speaker A. The correlation between xA and the ith

channel of EEG signals, yi, can be denoted as,

RA = similarity(xA, yi) (2)

where RA = [rA,1, · · · , rA,i, · · · , rA,I ] and rA,i denotes the
correlation between speaker A and I-channel EEG signals.
Similarly we can have RB for speaker B.

2) Predicting channel mask: In the neural attention mech-
anism, both RA and RB are taken as input by a gating
mechanism to produce the channel mask {Ms : s ∈ {A,B}}.
Two fully-connected (FC) layers are adopted to parameterise
the gating mechanism to capture the nonlinear interaction
among the channels [16]. The resulting channel mask for I-
channel EEG signals Y = {yi}I1 can be denoted as Ms =
[ms,1, · · · ,ms,i, · · · ,ms,I ],

Ms = softmax(W2 · (W1 ·Rs + b1) + b2) (3)

where a dimensionality-reduction layer with parameter W1

and bias b1 with reduction ratio r and tanh function as the
activation function, and a dimensionality increasing layer
with parameter W2 and bias b2, and followed by a sigmoid
activation. Finally, the neural attention mechanism modulates
the input EEG signals by applying the attention mask channel
by channel ŷs,i = ms,i × yi, or Ŷs = Ms

⊗
Y where

⊗
denotes a point-wise multiplication.

B. Auditory Attention Detection

Convolutional neural network (CNN) has been employed
as a classifier for auditory attention detection with state-of-
the-art performance [6], [7], [10], [11], [12]. Hence, we
adopt the CNN as a backend classifier that takes two sets of
modulated EEG signals as the input, one for speaker A and
another for speaker B, and decides which speech stimulus
is associated with the EEG responses in a binary decision.

As shown in Fig. 1, the neural architecture starts with a
convolution layer, which uses a kernel size of 64×9 and
a stride of 64×1. The convolution layer has a rectifying
linear unit (ReLU) activation function and is followed by
an average pooling layer with a 1×256 kernel, and two
FC layers with 20 and 10 neurons, respectively. Finally, a
softmax output layer is added for binary decision.

During training, we adopt the cross-entropy loss function
as the cost function in the adaptive moment estimation
algorithm (Adam) [20]. The learning rate is set to 1×10−3.
The channel attention mechanism and the CNN classifier are
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jointly trained as a single system. At run-time, the system
produces two values at the output nodes for decision-making.

III. EXPERIMENTS AND RESULTS

A. Experimental Setup

In this study, experiments were carried out on a public
auditory attention detection dataset [21], recorded at KU
Leuven, which is referred to as KUL Dataset. Briefly, 64-
channel EEG data were recorded from 8 male and 8 female
normal-hearing subjects when they listened to two competing
speakers and were instructed to attend to one speaker. EEG
data were recorded at a sample rate of 8192 Hz using a
BioSemi ActiveTwo system. Four Dutch short stories, nar-
rated by different male speakers, were used as speech stimuli
through a pair of insert earphones. The whole experiment was
split into 8 trials and each trial lasts 6 minutes. The auditory
stimuli were presented from 90° to the left and 90° to the
right of the subject, respectively. Overall, the EEG data from
16 normal-hearing subjects was collected, and there were 48
minutes of data for each subject.

B. Data Processing

The EEG data of each channel were firstly re-referenced
to the mean of the response of all channels. Then, all the
EEG data were bandpass filtered between 1 and 50 Hz, and
subsequently down-sampled to 128 Hz. The speech stimuli
were first passed through a Gammatone filterbank ranging
from 150 Hz to 8 kHz. All of the sub-bands were power-
law compression with 0.6 [22]. Finally, the speech envelopes
were transformed into their respective absolute envelopes by
a Hilbert transformation, low-pass filtered with 50 Hz, and
down-sampled from 512 Hz to 128 Hz to match the EEG
data.

The data set was randomly split into a training set (60%)
and a validation set (20%), and a test set (20%). For
each partition, data segments were generated with a sliding
window, denoted as the decision window, with an overlap
of 50%. We maintain a balanced number of speaker A/B
attention samples by subject, i.e, a random guess will give
a 50% accuracy. All the repetitions were discarded to keep
the training, validation, and test set mutually exclusive. We
are particularly interested in low-latency attention detection,
therefore, we only report the detection accuracy for four
short decision windows: 0.1-, 0.5-, 1-, and 2-second. To
avoid initialization bias, the experiments of each subject were
carried out 10 times with random initialization to report a
subject average accuracy.

C. Experiment Results

A comprehensive comparative study was carried out. We
re-implemented two reference baselines, namely the stimulus
reconstruction (linear) model [5], and the CNN (non-linear)
model [10], on KUL Dataset with 64-channel EEG. The dif-
ference between our CNN-CM model and the CNN baseline
lies in the additional channel attention mechanism.

As shown in Table I, the CNN-CM model significantly
outperforms the linear decoder with a large margin for all

Fig. 2. Auditory attention detection accuracy (%) of CNN-CM and CNN
models with 64-channel EEG for different decision windows. Statistically
significant differences: ∗∗p <0.01, ∗∗∗p <0.001. It is observed that a larger
decision window leads to a higher accuracy with a lower variance.

decision windows. These results corroborate with previous
studies [7], [10], [11], [12]. It is noted that the detection
accuracy increases as we increase the decision window
size. Encouragingly, the CNN-CM model has seen a mean
accuracy of 77.2% (SD: 8.24) for 0.1-second decision win-
dow, which represents an improvement of 15.9% over the
linear baseline for 2-second decision window. Moreover, the
average detection accuracy of the CNN-CM model exceeded
86% at a temporal resolution of around 1 second, comparable
to the human’s time lag when switching attention [23]. We
are not aware of other decoders that achieve similar accuracy
under such low latency settings.

As shown in Fig. 2, the CNN-CM model outperforms the
non-linear CNN model in [10] with consistent improvements
in AAD accuracy with 5.4% for 1-second and 2-second
decision windows, 9.7% for 0.5-second decision window,
and 10.7% for 0.1-second decision window, respectively.
With the channel attention mechanism, our CNN-CM model
significantly outperforms the CNN model (paired t-test: p
<0.01).

D. Effect of Electrode Reduction

We would like to examine if the proposed channel atten-
tion mechanism is still effective with a reduced number of
EEG channels.

Specifically, we reduced the EEG signals from 64-channel
to 32-channel and 16-channel following the electrode lo-
cations of the international 10/20 system, respectively. As
summarized in Table I, though AAD performance decreases
with low-density EEG systems [13], the CNN-CM model
continues to outperform both linear and non-linear baselines.
It is noteworthy that the CNN-CM model with 16-channel
EEG achieves even better results than the state-of-the-art
CNN model across all different decision windows.

It is a clear advantage to have a low number of EEG
electrodes because we considerably simplify data acquisition
and reduce the preparation time. Hence, our CNN-CM model
is more suitable for neuro-steered hearing prostheses.

IV. DISCUSSION AND CONCLUSIONS

All experiments have confirmed the effectiveness of the
proposed channel attention mechanism. We consider that two
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TABLE I
AUDITORY ATTENTION DETECTION ACCURACY (%) AND ITS STANDARD DEVIATION (±) IN A COMPARATIVE STUDY. † DENOTES OUR

RE-IMPLEMENTATION OF THE LINEAR MODEL IN [5]. ‡ DENOTES OUR RE-IMPLEMENTATION OF THE CNN MODEL IN [10]. a, b, c DENOTE THE

SIGNIFICANT INCREASE OF AAD ACCURACY OVER THE CNN METHOD [10] WITH p <0.05, p <0.01, AND p <0.001 RESPECTIVELY.

Model EEG Channels Decision window (second)
0.1 0.5 1 2

Linear [5]† 64 - 55.6 58.1 61.3
CNN [10]‡ 64 66.5 ± 9.22 74.6 ± 8.89 81.1 ± 8.45 82.9 ± 8.17
CNN-CM 64 77.2 ± 8.24c 84.3 ± 8.56c 86.5 ± 7.99b 88.3 ± 7.89c
CNN-CM 32 74.9 ± 7.94c 81.6 ± 8.13c 84.2 ± 8.18a 86.1 ± 7.74b
CNN-CM 16 72.8± 7.62b 79.2 ± 8.16b 82.0 ± 8.07 83.9 ± 7.92

main factors have contributed to the significant improvement
of the CNN-CM model over the baselines. One is the task-
oriented feature representation with a channel attention mask.
The attention mechanism dynamically focuses the attention
on effective EEG channels, as evidenced by the reduced
standard deviation of accuracy across the participating sub-
jects over the CNN baseline in Table I. Another is the joint
training between the channel attention mechanism and the
CNN classifier, which allows for feature representation and
classifier to be optimized for attention detection performance.
In future work, we will study auditory attention detection on
subjects with hearing loss based on the proposed channel
attention mechanism.
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