
  

 

Abstract— Minimum variance (MV) beamforming improves 
resolution and reduces sidelobes when compared to delay-and-
sum (DAS) beamforming for photoacoustic imaging (PAI). 
However, some level of sidelobe signal and incoherent clutter 
persist degrading MV PAI quality. Here, an adaptive 
beamforming algorithm (PSAPMV) combining MV formulation 
and sub-aperture processing is proposed. In PSAPMV, the 
received channel data are split into two complementary 
nonoverlapping sub-apertures and beamformed using MV.  A 
weighting matrix based on similarity between sub-aperture 
beamformed images was derived and multiplied with the full 
aperture MV image resulting in suppression of sidelobe and 
incoherent clutter in the PA image. Numerical simulation 
experiments with point targets, diffuse inclusions and 
microvasculature networks are used to validate PSAPMV. 
Quantitative evaluation was done in terms of main-lobe-to-side-
lobe ratio, full width at half maximum (FWHM), contrast ratio 
(CR) and generalized contrast-to-noise ratio (gCNR). PSAPMV 
demonstrated improved beamforming performance both 
qualitatively and quantitatively. PSAPMV had higher resolution 
(FWHM =0.19 mm) than MV (0.21 mm) and DAS (0.22mm) in 
point target simulations, better target detectability (gCNR 
=0.99) than MV (0.89) and DAS (0.84) for diffuse inclusions and 
improved contrast (CR in microvasculature simulation, DAS = 
15.38, MV = 22.42, PSAPMV = 51.74 dB).  

I. INTRODUCTION 

 Beamforming is a critical building block to ensure high 
quality photoacoustic imaging (PAI) with linear array clinical 
and pre-clinical imaging systems. Delay-and-sum (DAS) 
beamforming is commonly employed and preferred for its 
low computational complexity and real time capability. 
However, when DAS beamforming is applied to PAI, the 
resultant images suffer from resolution degradation and 
clutter corruption due to off-axis and sidelobe signal 
contributions [1]. Therefore, alternative beamforming 
algorithm development has been pursued in the PAI 
community. Several advanced PAI beamforming algorithms 
have been reported in literature for example minimum 
variance (MV) [1], coherence processing [2-6], delay-
multiply-and-sum (DMAS) [7-9] and machine learning based 
image reconstructions [10-13]. In this paper, we focus on 
improving the performance of MV for PAI. 
 MV beamforming calculates optimal aperture weighting 
using data statistics in aperture domain to reduce 
contributions from off-axis signals. Park et al. adapted MV 

 
 

beamforming for PAI and demonstrated resolution 
improvement over DAS [1]. Mozaffarzadeh et al. combined 
both MV and eigen-based MV with DMAS to improve the 
resolution of DMAS beamforming [14, 15]. We have 
previously demonstrated the use of MV for in vivo cardiac 
PAI [4] and showed that incoherent clutter noise was not 
suppressed using only MV beamforming. Paridar et al. 
incorporated a sparse regularization constraint to the MV 
optimization problem improving performance [16]. Even 
though MV improves resolution and reduces sidelobes when 
compared to DAS, some level of sidelobe signals persist. One 
simple solution is to weight MV images with coherence factor 
[1, 4, 17, 18]. However, this may not be an ideal solution in 
low signal-to-noise ratio environments resulting in 
undesirable PA signal suppression [19]. In this paper, we 
propose to utilize a recently developed photoacoustic sub-
aperture processing (PSAP) method [19] with MV to address 
the sidelobe corruption problem while preserving resolution 
improvement obtained with MV.  

II. THEORETICAL BACKGROUND 

A. Delay-and-sum (DAS) Beamforming 

 Consider, a linear array ultrasound transducer with a M-
element aperture that receives PA generated acoustic waves. 
These are stored in a column vector X(t) after applying 
element-wise delays, dm for dynamic receive focusing. DAS 
beamforming defined as weighted sum of vector elements of 
X(t) represented as below: 

 ( ) ( ) ( )Ht t tDAS W X   (1) 

where, W(t) is the aperture weighting vector and t denotes 
time-of-arrival which is mapped into imaging depth assuming 
constant speed of sound in the propagating medium. 

B. Minimum Variance (MV) Beamforming 

  MV beamforming [1, 4, 20] calculates W(t) by minimizing 
the variance of beamformed signals by solving the following 
optimization problem: 
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where, R(t) is the co-variance matrix and a is the steering 
vector. The solution using a Lagrange multiplier method 
results in a MV weighting vector: 
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In practice, R(t) is replaced with RSA(t) by dividing the full 
array into overlapping sub-arrays with the sub-array length 
denoted by S. Finally, MV beamformed image can be 
represented as follows: 
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 MV sMV W X   (4) 

where, Xs(t) is the sub-array signal vector. 

C. Photoacoustic Sub-aperture Processing (PSAP) for 
Minimum Variance (MV) Beamforming 

 We first generate two MV beamformed images, MV1(t) and 
MV2(t) using two non-overlapping sub-apertures having no 
common elements [19, 21, 22]. Then, 2-D normalized cross-
correlation (NCC) between MV1(t) and MV2(t) is performed 
to separate on-axis main-lobe signals and interfering side-lobe 
signals. NCC(t) is used to estimate a dynamic weighting 
matrix, PSAPW(t) using following equation: 

 ( ) max( ( ), )t t WPSAP NCC   (5) 

where,  is a minimum NCC threshold value to estimate a 
weighting matrix having a range of [  , 1] (ε=0.001, 
empirically chosen to distinguish between main and side lobe 
signals). Finally, PSAPW(t) is multiplied with MV(t) resulting 
in a PSAP MV beamformed image denoted as PSAPMV(t). 
Here, we design the first sub-aperture with ones and zeros 
with an alternating pattern of N elements on and N elements 
off, with the second sub-aperture is complementary to the first 
one. For comparative studies, PSAP images were also derived 
using DAS images termed as PSAPDAS(t).   

III.  MATERIALS AND METHODS 

A. Numerical Simulation Study 

 The proposed method was validated using numerical 
simulations with point targets, diffuse inclusion and 
microvasculature networks. A point target phantom was 
designed with four 100 µm point targets placed equidistantly 
starting from a depth of 8 mm with an initial pressure 
magnitude of 3 Pa. PA channel data were simulated using the 
k-Wave toolbox [23]. Diffuse inclusion phantom contained 
two 3 mm-diameter circular targets with random spatial 
distribution of optical absorbers (299 absorbers/mm2) [24]. 
For the microvasculature phantom, vascular images collected 
from the fundus oculi drive [25] were used [19]. For both 
inclusion and microvasculature simulations, a hybrid 
simulation framework [4] with MCMatlab [26] and k-Wave 
[23] toolbox was used. MCMatlab estimated the initial 
pressure distribution by performing optical simulation while 
PA channel data were derived using k-Wave. Optical 
simulation was done to model 95% oxygenated blood using 
an 850 nm laser irradiation wavelength with target and 
background absorption coefficients of 5.6 and 0.01 cm-1, 
respectively. An acoustic receiver with 128-elements (72-µm 
element width, 18-µm kerf) operating at fc = 21 MHz, 100% 
fractional bandwidth and 84 MHz sampling frequency was 
modelled.  

B. Algorithm Implementation 

 DAS beamforming was performed with a 64-element 
aperture, uniform apodization and f-number of 1. MV 
beamforming used sub-arrays with length S = 24 and diagonal 

loading  1 100 S    to estimate RSA(t). PSAP parameters 

used are listed in Table I. Parameters  were chosen based on 

previous studies reported in [19]. Algorithms were run using 
a GPU and MATLAB Parallel Computing toolbox for 
accelerated computation.  

 

 
C. Quantitative Performance Analysis 

 For point target simulations, we computed the main-lobe-
to-sidelobe (MLSL) ratio (dB) and full-width-at-half-
maximum (FWHM) at -6 dB as follows [19]: 

  max min
1020 log 

 
n

m mMLSL   (6) 

where, mmax and mmin denote the maximum and minimum 
signal amplitude within a target rectangular region-of-interest 
(ROI) centered on each point (green ROI in Fig. 1 (a)) and σn 
represents the standard deviation from two noise ROIs (blue 
ROIs in Fig. 1 (a)) around the target ROI.  
 Diffuse inclusion and microvasculature simulations were 
quantified using contrast ratio (CR) and generalized contrast-
to-ratio (gCNR) [27, 28]: 
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where, mt and mb denote average envelope PA signal 
amplitudes for target and background ROIs, respectively. For 
gCNR, kt and kb denote histograms with 1000 bins (Nbin with 
bin centers indicated by j and chosen empirically) derived 
from the target and background ROIs (mean ROI size = 838 
pixels), respectively. 

TABLE I: PSAP PARAMETERS 

Experiment Parameter Value 

Point Target 
Alternating elements (N) 16-16 

 NCC Kernel (Wavelength, A-lines) (4.5λ,3) 

Diffuse Inclusion 
Microvasculature 
 

Alternating elements (N) 2-2 

NCC Kernel (Wavelength, A-lines) (1.5λ,3) 

  

 
Fig. 1. Beamformed images from point target simulation. (a) DAS, (b) 

MV, (c) PSAPDAS and (d) PSAPMV.  
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IV. RESULTS AND DISCUSSION 

 Figures 1 (a) – (d) show point target beamformed images 
with DAS, MV, PSAPDAS and PSAPMV respectively. Note the 
presence of strong sidelobe signals with DAS. MV reduced 
sidelobes seen with DAS but does not suppress it completely. 
Incorporation of PSAP with both MV and DAS provided 
beamformed images with significant performance 
improvements over DAS and MV.     
 Figures 2 (a) – (b) show the point spread function (PSF) at 
a depth of 8 mm and 20 mm, respectively. PSAPMV and 
PSAPDAS have narrower PSFs with lowest sidelobe level. 
Tables II and III summarize the results for MLSL and FWHM 
comparison. Improvement in lateral resolution (lowest 
FWHM) and sidelobe reduction (highest MLSL) was 
achieved using PSAPMV. 

 

 
Beamformed images for the diffuse inclusion simulation 

using DAS, MV, PSAPDAS and PSAPMV are shown in Figs. 3 
(b) – (e). The ground truth initial pressure distribution with 
target (green circle) and background (white half-circles) ROIs 
is presented in Fig. 3 (a). For DAS, we observe high sidelobe 
signal levels specially near the borders for shallow targets as 
indicated by arrows (Fig. 3 (b)). MV results show significant 
image quality improvements with suppression of the strong 
border region clutter signals (Fig. 3 (c)). PSAPDAS further 
reduced sidelobes except for some noise signals near the 

borders (white arrows in Fig. 3 (d)). Highest performance 
enhancement with increased sidelobe suppression was 
achieved with PSAPMV (Fig. 3 (e)). 

 

 

 
  CR and gCNR comparison results for diffuse inclusion 
simulation are shown in Figs. 4 (a) – (b) respectively. PSAPMV 
and PSAPDAS demonstrated similar results with better CR and 
gCNR compared to DAS and MV alone. For example, mean 
gCNR values (n = 10) for the inclusion at 8 mm, for DAS = 
0.84, MV = 0.89, PSAPMV = 0.98 and PSAPDAS = 0.99 
demonstrate that improvement in both contrast and target 
detectability is achieved using PSAP for MV and DAS. 
 Figures 5 (b) – (e) show microvasculature beamformed 
images with DAS, MV, PSAPDAS and PSAPMV, respectively. 

 
Fig. 2. Lateral PSF at depths of (a) 8 and (b) 20 mm, respectively.   

 
Fig. 3. Diffuse inclusion beamforming results. (a) Ground truth initial 

pressure distribution, (b) DAS, (c) MV (d) PSAPDAS and (e) 
PSAPMV. Display dynamic range 55 dB. 

TABLE II: MLSL (dB) RESULTS  

 DAS MV PSAPMV PSAPDAS 
8 mm 41.15 50.84 84.63 67.98 
12 mm 38.16 47.40 107.85 65.97 
16 mm 35.91 46.89 100.12 65.62 
20 mm 33.82 42.26 95.05 66.92 

  

 
Fig. 4. (a) CR and (b) gCNR comparison for diffuse inclusion. 

  

 
Fig. 5. Simulated microvasculature beamformed images. (a) Ground 

truth initial pressure distribution, b) DAS, (c) MV (d) PSAPDAS 
and (e) PSAPMV, (f) axial profile comparison at a blue line ROI 
shown in fig. 5 (a). Display dynamic range 55 dB. 
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The ground truth initial pressure distribution is presented in 
Fig. 5 (a). Note that DAS image suffer from high level of 
sidelobe signals specially near the borders for shallower 
vessels (white arrows in 5 (b)). Results using MV show 
suppression of the strong sidelobe signals but unexpected 
background clutter persist. PSAPDAS further reduced 
sidelobes except for some noise signals near the borders 
(white arrows in Fig. 5 (d)). Best quality image was achieved 
with PSAPMV (Fig. 5 (e)) showing a close resemblance with 
the ground truth image. CR and gCNR were computed by 
placing small rectangular ROIs covering the shallowest 
vessels as target ROIs (green ROI in Fig. 5 (a)) and then 
translating them into the sidelobe regions as background ROIs 
(red ROI in Fig. 5 (a)). PSAPMV had the highest CR and gCNR 
values (Mean CR [dB] for DAS = 15.38, MV = 22.42, 
PSAPMV = 51.74, PSAPDAS = 43.64 and mean gCNR for DAS 
= 0.71, MV = 0.81, PSAPMV = 0.84, PSAPDAS = 0.82).  

 
V. CONCLUSION 

 In this paper, a sub-aperture processing technique to 
suppress sidelobes and background clutter with MV 
beamforming have been reported and validated using 
numerical simulations. This hybrid beamforming algorithm 
coupled better resolution from MV with sidelobe signal 
suppression from PSAP. The resulting PSAPMV demonstrated 
higher contrast and improved target detectability. Future work 
will involve validation in more complicated simulation 
environments (e.g., addition of channel noise, acoustic 
attenuation), phantom experiments and in vivo applications.  
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