
  

  

Abstract— Pushrim-activated power-assisted wheelchairs 
(PAPAWs) are assistive technologies that provide propulsion 
assist to wheelchair users and enable access to various indoor 
and outdoor terrains. Therefore, it is beneficial to use PAPAW 
controllers that adapt to different terrain conditions. To achieve 
this objective, terrain classification techniques can be used as an 
integral part of the control architecture. Previously, the 
feasibility of using learning-based terrain classification models 
was investigated for offline applications. In this paper, we 
examine the effects of three model parameters (i.e., feature 
characteristics, terrain types, and the length of data segments) 
on offline and real-time classification accuracy. Our findings 
revealed that Random Forest classifiers are computationally 
efficient and can be used effectively for real-time terrain 
classification. These classifiers have the highest performance 
accuracy when used with a combination of time- and frequency-
domain features. Additionally, we found that increasing the 
number of data points used for terrain estimation improves the 
prediction accuracy. Finally, our results revealed that 
classification accuracy can be improved by considering terrains 
with similar characteristics under one umbrella group. These 
findings can contribute to the development of real-time adaptive 
controllers that enhance PAPAW usability on different terrains.  

I. INTRODUCTION 

Pushrim-activated power-assisted wheelchairs (PAPAWs) 
are mobility assistive devices that can provide on-demand 
propulsion assistance to their users. PAPAW use can improve 
accessibility of environments that are commonly inaccessible 
or difficult to access for manual wheelchair users, such as 
uneven terrains or steep slopes [1–3]. Although commercially 
available PAPAWs can be used on a variety of indoor and 
outdoor terrains, their controllers are mainly insensitive to 
environmental changes (e.g., slipperiness or roughness of the 
terrain). Therefore, the lack of an adaptive control framework 
may affect PAPAWs’ usability or safety on different terrains 
[2]. It is worth noting that similar concerns related to terrain-
dependent driving performance have been reported among 
power wheelchair users (e.g.,  getting stuck on gravel) [4]. To 
address this limitation, terrain classification frameworks can 
be used in conjunction with adaptive controllers to improve 
PAPAW operation by adjusting torque, velocity, or 
acceleration/deceleration in different environments. 

Terrain classification frameworks have been extensively 
studied in the context of mobile robot and planetary rover 
navigation [5–7]. Kinematic/vibration-, vision-, and acoustic-
based classifiers are among the most commonly used terrain 
classification models. Although visual and acoustic features 
can provide useful information about terrain characteristics, 
they are also affected by other ambient changes, such as 
 

*Research supported by the Natural Sciences and Engineering Research 
Council of Canada (NSERC). 

M. Khalili is with the School of Biomedical Engineering and H.F.M. Van 
der Loos is with the Department of Mechanical Engineering at the University 

lighting and noise. Hence, kinematic-based measurements 
(e.g., time/frequency-domain features) can provide more 
robust terrain-specific characteristics for classification 
purposes. It should be noted that using multimodal sensory 
measurements (i.e., fusing vision, acoustic, and/or vibration 
data) could contribute to more reliable predictions compared 
to using individual modalities [8]. Machine learning 
algorithms are commonly used for terrain classification 
purposes [7,9,10]. Classifiers such as Random Forest (RF) and 
Support Vector Machine (SVM) are commonly used in 
conjunction with feature engineering methods to improve 
prediction performance. Time- and frequency-domain 
statistical measures, alongside power spectral density (PSD) 
and fast Fourier transform (FFT) characteristics, are among the 
most commonly used feature extraction methods [11].  

In our previous work [12], we examined the feasibility of 
using kinematic data and machine learning algorithms to 
develop a terrain classification framework for PAPAWs. We 
used gyroscope and acceleration data that were collected on 4 
outdoor terrains consisting of grass, gravel, asphalt, and 
sidewalk as well as 3 indoor terrains consisting of concrete, 
linoleum, and carpet. Although an overall prediction accuracy 
of 80.2% was achieved for a 7-class RF classifier, the rate of 
correct outdoor terrain classification was notably higher 
compared to indoor terrain predictions. The best classifier 
consisted of a combination of 25 time-, frequency-, PSD-, and 
FFT-based features, with time and frequency features having 
the highest contributions to terrain classification. Although the 
proposed framework was successfully tested offline, the 
feasibility of implementing the proposed model was not 
evaluated for real-time classification. 

This paper, which presents a methodological extension of 
our previous study, focuses on (1) examining the effects of 
window size, feature subsets, and re-grouping terrains on 
classification performance; and (2) investigating the feasibility 
of real-time implementation of the proposed classification 
models. The rest of this paper is organized as follows. Offline 
and real-time classification pipelines are presented in Section 
II. The findings regarding the effects of window size, feature 
subsets, and terrain types on classification accuracy are 
presented and discussed in Sections III and IV, respectively. 
Finally, the main contributions of this work and the 
implications of our findings are presented in Section V. 

II. METHODS 

A. Test setup and experimental protocol 
Triaxial gyroscope (ωx, ωy, ωz) and acceleration (ax, ay, az) 

data were collected using a wheelchair-mounted (Fig. 1) 
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MPU-6050 inertial measurement unit (IMU). IMU 
measurements were sampled at 300 Hz and transferred to a 
laptop in real-time. Study participants included 1 skilled and 3 
experienced wheelchair users (1 Female and 3 Male; average 
weight: 136±15 lbs.). Participants performed a set of pre-
defined wheelchair activities (e.g., moving straight forward 
and turning) at a self-selected speed on 7 terrains of grass, 
gravel, asphalt, sidewalk, concrete, linoleum, and low-pile 
carpet. These experiments were performed with the TwionTM 
powered wheels (Alber GmbH, Germany). More information 
about the test protocol can be found in our previous paper [12].  

B. Offline model training and testing 
Data preprocessing: First, gravitational acceleration was 

subtracted from acceleration measurements. Next, all 
kinematic measurements were filtered with a fourth-order 
Butterworth filter with a 20 Hz low-pass cut-off frequency. 
Time-series measurements were split into short overlapping 
segments that consisted of 512 or 1024 data points with 50% 
overlap. To prevent frequency leakage for PSD analysis, these 
segments were windowed with a Hanning function. Following 
PSD analysis, data associated with frequencies greater than 25 
Hz were removed from all datasets. Finally, four label sets 
associated with different combinations of indoor and outdoor 
terrains were added to the datasets (Table I.)  

Feature extraction: The following features were 
extracted from kinematic measurements: (a) “Time” features, 
including mean, standard deviation (std), norm, maximum 
(max), minimum (min), root mean square (rms), zero crossing 
rate (zcr) of each time window; and (b) “Frequency” features, 
including root mean square frequency (rmsf), frequency centre 
(fc), root variance frequency (rvf) of PSD signals. These 
features were calculated for all IMU measurements (i.e., X, Y, 
and Z axes of gyroscope and accelerometer). The “Time” and 
“Frequency” features consisted of 42- and 18-dimension data 
frames, respectively. Pairwise Pearson correlation coefficients 
were calculated between these features and each label set. 

Classification pipeline: The train/validation dataset 
included 2/3 of the experimental measurements that were 
selected through a semi-random process to ensure data 
homogeneity (i.e., including equal subsets from all 
participants, all terrains, and all maneuvers). The rest of the 
measurements were used for testing and evaluation. The 
classification pipeline consisted of three steps, including (1) 
standardization: using standard scaler to remove the mean and 
to scale to unit variance; (2) feature selection: using a 
sequential feature selection algorithm to identify the most 
relevant features for classification; and (3) model training and 
validation: training RF classifiers with a grid-search process 
for hyperparameter tuning and with five-fold cross-validation.   

Evaluation: The test dataset was normalized using the 
scalar values from the training step and transformed to include 
the top selected features. The output of the classification 
pipeline (i.e., the optimal trained model) was used to evaluate 
the classification performance for the isolated test dataset. 
Each classifier’s performance was evaluated using prediction 
accuracy and confusion matrix. We used Python 3.7 and scikit-
learn for data preprocessing, training/validating/testing the 
classifiers. Additionally, we used the Cochran's Q test and 
McNemar's test from the Mlxtend Python library (Raschka, S. 
2016) to compare the performance of different classifiers. 

 
Figure 1. Left: IMU attached to the wheelchair frame; Right: the 
coordinate system of the IMU  

TABLE I.  LABEL SETS USED FOR CLASSIFICATION 

Label 
set List of labels 

8-Class grass, gravel, asphalt, sidewalk, concrete, 
linoleum, carpet, no-motiona 

6-Class grass, gravel, asphalt, sidewalk, indoor, no-motion 
5-Class grass, gravel, asphalt-sidewalkb, indoor, no-motion 
3-Class outdoor, indoor, no-motion 

a. “no-motion” data is associated with the stationary state of the wheelchair recorded at the start/end 
of data acquisition. These data are significant for real-time terrain classification applications. 
b. Asphalt & sidewalk datapoints are grouped together as a single terrain, labelled asphalt-sidewalk. 

C. Real-time model implementation and testing 
A simulated acquisition process was used to stream data 

through the real-time pipeline at 300 Hz, mimicking the 
hardware acquisition pipeline. These data were collected in a 
rolling window of the most recent N (512 or 1024) kinematic 
data points. A separate process took the data window and ran 
through the same preprocessing, feature extraction, and 
classification steps as the offline process, except over the 
single updating data window. The real-time testing pipeline 
continuously classified the most recently captured information 
in the data window. Subsequent windows used in classification 
contained shifted overlaps with previous windows and newly 
acquired data. In contrast to the offline classification, the 
parallel acquisition and classification processes introduced 
asynchronicity for the shift length across each iteration. 
Therefore, with different subsets of data, the offline and online 
accuracy may exhibit marginally different values. The real-
time performance was evaluated in terms of prediction 
accuracy and computational time. 

III. RESULTS 

A total of 10,517 and 5,197 data segments were used for 
512- and 1024-window datasets, respectively. The breakdown 
of different labels for the 512-window dataset is as follows 
{no-motion: 762; concrete: 1,380; carpet: 1,352; linoleum: 
1,302; asphalt: 1,357; sidewalk: 1,429; grass: 1,503; gravel: 
1,432}.  

A. Offline classification: training and testing models 
We trained a total of 24 classifiers to examine the effects 

of window size (512 vs. 1024 data points in each window), 
available feature subsets (“Frequency”, “Time”, 
“Combined”), and terrain types (3-Class, 5-Class, 6-Class, 8-
Class) on classification performance (Fig. 2). Our results 
revealed that higher performance accuracy is achieved by 
increasing the data points in each time window. Additionally, 
our findings suggest that classification performance decreases 
by increasing the number of classes, meaning that 
differentiating indoor vs. outdoor terrains can be done with 
higher accuracy compared to differentiating individual indoor 
and outdoor terrains. We also found that using a combination 
of time and frequency features contribute to higher 
classification accuracy compared to using only time or only 
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frequency features. In all cases, regardless of the window size 
or the number of classes, significantly higher accuracy is 
achieved when using “Combined” features compared to using 
“Frequency” features. However, the difference between the 
classifiers using “Combined” or “Time” features are not 
statistically significant in all cases (e.g., Fig. 2: 3-Class 
Combined-512 vs. 3-Class Time-512).  

We performed further analysis to examine the effects of 
number and types of features as well as the number of classes 
on classification performance (Fig. 3). These findings provide 
further evidence that classifiers based on “Combined” features 
have consistently higher performance accuracy regardless of 
the number of features, number of classes, or the window size. 
It is worth noting that we found moderate or strong correlation 
between the majority of the top selected features and 
associated label sets. Examples of these values for a “3-Class 
Combined-1024” classifier are presented in Table II.  

Confusion matrices were used to examine the classification 
accuracy for different terrain types and to identify 
misclassified labels (Fig. 4). These figures show which terrains 
are more difficult to distinguish. As an example, linoleum, 
concrete, and carpet in 8-Class models were often 
misclassified due to similarity in their surface characteristics. 
Visualization of the predicted labels for one of the 
experimental maneuvers on sidewalk is shown in Fig. 5. 
Confusion matrices also display the effects of regrouping 
similar terrains (e.g., 8-Class vs. 6-Class) on the overall 
classification performance.  

 
Figure 2. Classification performance (to avoid excessive annotations, 
significant differences are shown for 3-Class models only) 

 

 
Figure 3. Classification accuracy vs. number of selected features for 1024-
window datasets (due to notably poor performances, classifiers based on 
“Frequency” features are not shown here)  

 

TABLE II.  TOP SELECTED FEATURES (3-CLASS COMBINED-1024) 

Features with correlation 
coefficient greater than 0.5 

Features with correlation 
coefficient between 0.3 and 0.5 

norm ωx zcr ωy min ay zcr ωx rvf ωy norm ay 

rms ωy min ax rmsf ay rvf ωx zcr ωz rvf az 

max ωy std ax zcr az fc ωx fc ax - 

std ωy rms ax std az rmsf ωy rms ay - 

 

  

  

Figure 4. Confusion matrices for different label sets (1024-window) 

 
Figure 5. Predicted labels for a single maneuver on “sidewalk” for “8-Class 
Combined-1024” classifier (this maneuver consisted of 10 m straight 
propulsion followed by a 180° turn and repeated 8 times). 

B. Real-time terrain classification 

We found that real-time classification models had similar 
prediction accuracy to the offline classifiers. A summary of 
real-time classification performance of 8 models is presented 
in Fig. 6. Classification time for these classifiers for a single 
sample was measured on a computer with an Intel® Core™ 
i7-6560U CPU and 8 GB RAM. While we hypothesized using 
“Combined” features would increase the classification time, 
we found inconclusive evidence in the implementation of the 
acquisition-classification pipeline. Similarly, we did not find 
any direct relation between the prediction time and the length 
of window segments. 

IV. DISCUSSION 

The prediction accuracy of 24 terrain classification models 
was evaluated offline and in real-time, and similar 
performance was observed for both implementations. Larger  
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Figure 6. Real-time terrain classification performance 
window segments were associated with higher prediction 
accuracy. Similar findings were reported in the context of 
terrain classification for mobile robots [7]. However, the trade-
off comes in the form of classification latency, where the larger 
window sizes correspond to greater temporal history. During 
transitions between terrains, a classification with a longer time 
window would be slower at identifying the new terrain. This 
identification lag could be compensated by incorporating a 
reduced number of predicted classes, thus reducing the number 
of terrain transitions seen by the PAPAW. 

We can see in Fig. 5 that several datapoints were 
misclassified as asphalt as opposed to sidewalk. This could be 
associated with significant overlap between kinematic 
characteristics on these two terrains, which is specifically 
highlighted when changing direction/speed. Reducing the 
number of predicted classes has a positive effect on prediction 
accuracy. For instance, higher prediction accuracy was 
achieved when grouping asphalt and sidewalk as one terrain 
type. However, this improvement in prediction accuracy 
comes at the cost of reduced granularity for terrain 
identification. For controller design, greater granularity would 
allow for more specific tuning for performance, whereas the 
greater accuracy may improve consistency for the user. The 
optimized trade-off between granularity and clinical relevance 
can be further explored through clinical testing. Although the 
prediction accuracy of terrain classification was reported to be 
affected by the linear velocity of the mobile platform in 
previous studies [11,13,14] (e.g., the prediction accuracy of 
grass vs. gravel was shown to be higher at higher speeds), 
classifiers developed in our study are mainly insensitive to 
velocity variability for a range of common wheelchair 
activities (including linear and circular motion).  

A combination of time and frequency features exhibit 
better prediction accuracy compared to the use of only time or 
only frequency features. This is similar to what has been 
reported regarding the importance of combining different data 
sources to improve classification accuracy [15]. In contrast to 
the findings of Mei et al. [7], we found that time features have 
higher contributions to classification performance compared 
to frequency features (i.e., time-features exhibit higher 
predictive power). Similar to previous reports [16], we found 
that gyroscope measurements provide relevant information for 
terrain classification purposes. This is of significant 
importance since many of the existing terrain classification 
models rely on acceleration data only.  

The proposed terrain classification frameworks in this 
work can be adopted for different PAPAW control 

applications. Subsequently, different model parameters can be 
determined based on user preferences or usability 
requirements (e.g., low-latency vs. higher accuracy terrain 
classification). Our future work includes collecting more data 
on a variety of terrains (including uneven, soft, wet surfaces) 
and when transitioning between different indoor and outdoor 
terrains. Additionally, we will compare the performance of the 
developed classification pipeline with existing neural network-
based terrain classification frameworks. 

V. CONCLUSION 

We developed kinematic-based, velocity-independent, 
and cost-effective terrain classification frameworks that were 
successfully implemented offline and in real-time. These 
classification models are modular and can be customized for 
different PAPAW control applications. The output of these 
models can be used to adjust control parameters for different 
terrain conditions. Alternatively, the information about terrain 
type can be used in the future development of PAPAW 
controllers to improve traction or avoid wheel slip. Adoption 
of these control techniques may provide a more efficient and 
safe experience for PAPAW users. 
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