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Abstract— Early mortality prediction is an actively re-
searched problem that has led to the development of various
severity scores and machine learning (ML) models for accurate
and reliable detection of mortality in severely ill patients staying
in intensive care units (ICUs). However, the uncertainty of
such predictions due to irregular patient sampling, missing
information, or high diversity of patient data has not yet been
adequately addressed. In this paper, we used confident learning
(CL) to incorporate sample-uncertainty information into our
mortality prediction models and evaluated the performance
of these models using a large dataset of 139,367 unique ICU
admissions within the eICU Collaborative Research Database
(eICU-CRD). The results of our study validate the importance
of uncertainty quantification in patient outcome prediction and
show that the state-of-the-art ML models augmented with CL
are more robust against epistemic error and class imbalance.

I. INTRODUCTION

In recent years, a large body of work has been devoted to
applying machine learning (ML) and artificial intelligence
(AI) to predict patient outcome, from which two lines of re-
search stand out. First, studies that utilize ML to extract clin-
ically relevant information from complex electronic health
records (EHRs) to improve the accuracy of medical diagnos-
tic models and assist clinicians in establishing a prognosis
[1]–[5]. Second, research that argues trust in human-AI col-
laboration and investigates the role of human clinicians in in-
terpreting the decisions made by medical ML models [6]–[9].
Although these two lines of research have advanced the field
of patient outcome prediction considerably, quantifying and
communicating the uncertainty of predictive models, mainly
caused by uncertain samples, remain an open and challenging
area of research. By uncertain samples, we refer to samples
that are difficult to correctly classify. This difficulty is class-
conditional and could stem from multiple sources such as
noise, dataset shift, bias, or missing information [8] (Figure
1). The presence of challenging/uncertain cases in a dataset
used to train predictive models introduces two main problems
that can impact the prospective applications of these models:
(1) unrobust evaluation of the learning models, and (2) the
lack of reliability of decisions made upon these results.

In recent years, several attempts have been made to address
predictive uncertainty, including prediction intervals [10],
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Sample challenging cases

Fig. 1: A sample thematic view of challenging cases (caused
by aleatoric uncertainty) in a binary classification task.

conformal inference [11], and ensembling [12]. However,
the majority of these methods are model-dependent and are
subject to epistemic error and class-imbalance bias. More-
over, quantification/communication of uncertainty is not ad-
equately addressed in mortality prediction literature, despite
its critical importance in patient care and the frequency of
its application in critical care decision making. In this paper,
we utilize confident learning (CL) [13], a model- and data-
agnostic approach to characterize the uncertainty of samples
when predicting mortality for critically ill patients within
24 hours of ICU admission. CL is robust to heterogeneous
and imbalanced class distributions and disambiguates model
uncertainty from sample uncertainty while estimating the
joint distribution of uncertain and certain labels. Our main
goal in this paper is two-fold:

Pruning– Detecting challenging (i.e. uncertain) cases
through multiple iterations of cross-validation and train and
evaluate the machine learning models on a pruned dataset
(challenging cases excluded). This objective will provide new
insights into both the deficiency of existing performance met-
rics in incorporating uncertain samples and the importance
of clean training datasets in developing predictive models.

Uncertainty prediction– Converting the binary problem
of mortality prediction to a multi-class classification problem
and developing ML models to detect challenging cases. This
will help flag patients with highly uncertain predictions who
need a second opinion.

In Section II, we first formalize the problem we are
addressing and define used notations and concepts, followed
by an overview of the CL approach. In Section III, we present
experimental evaluation and the results. We conclude the
paper by discussing the main implications of our study, with
possible suggestions for future work in Section IV.
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Fig. 2: t-SNE plots for different perplexities, color-coded by prediction outcomes– all correctly classified, and all mis-
classified. The perplexity can be interpreted as a smooth measure of the effective number of neighbors.

II. UNCERTAINTY DETECTION USING CONFIDENT
LEARNING

A. Problem Formalization

In the context of binary classification with possibly uncer-
tain labels (i.e. challenging cases), let define each sample si
of dataset D = {s1, s2, . . . , sn} in the form of 〈xi, ỹi〉, where
without loss of generality xi ∈ Rd indicates the feature space
of all critically ill patients (with all categorical variables are
binary encoded) and ỹi ∈ {0, 1} defines the binary output.
Our binary classifiers are trained to predict whether a patient
will die (ỹi = 1) or not (ỹi = 0). The problem we address
in this paper is detecting cases (i.e. si’s) for which there
might be a latent label y∗i that, with a high probability, is
different from ỹi, indicating the case uncertainty. While, in
the patient outcome datasets, the chance of having samples
for which ỹi 6= y∗i is very slim, we use this technique to
detect prediction uncertainties and flag uncertain samples
of the dataset. Thus, latent label y∗ in this study refers to
an indicator of sample uncertainty. After detecting uncertain
samples, we train and test our ML models on two variations
of Dtrain: (1) all samples for which ỹi 6= y∗i excluded, and
(2) 〈xi, ỹi〉 such that ỹi ∈ {0, 1, 3}, where (ỹi = 3) means
the sample (patient) is hard to classify.

B. Uncertainty Detection

The confident learning (CL) algorithm we utilized in this
study [13] is built on the commonly used assumption that
label uncertainty is class-conditional, and it can be identified
based on the class labels, not the data [14]–[16]. For example,
in mortality prediction, a patient with a unique clinical
presentation might be more likely to be misclassified as
'expired', while the correct class is 'alive'. This approach is
model-agnostic and does not associate any specific loss func-
tion with the prediction model used for detecting uncertain
labels. To detect the samples for which ỹ 6= y∗ (uncertain
samples in our scenario), CL calculates the joint distribution
of label uncertainty (i.e. p(ỹ, y∗)) for every pair of (ỹ, y∗) in
the dataset. For example, for our mortality prediction task,
the algorithm estimates p(0, 1), p(1, 0), p(0, 0), and p(1, 1),
where p(i, i) shows the joint distribution of certain samples.
To estimate the joint distribution of label uncertainty, CL
disambiguate epistemic uncertainty (i.e. model errors) from
aleatoric uncertainty (i.e. sample uncertainty), without any
prior knowledge about the distribution of uncertain or latent
labels (y∗) and finds samples that are likely to belong to y∗.
Moreover, when calculating the joint probability, CL uses

thresholding to mitigate the impact of higher probabilities
caused by class-imbalance (e.g. larger thresholds for the
majority classes). After detecting the uncertain samples,
we re-trained our predictive models using a training set:
(1) without uncertain samples (i.e. pruned) and (2) with
uncertain samples flagged as 'challenging' (i.e. three-class
classification).

III. EXPERIMENTAL EVALUATION

A. Dataset and Data Preparation

The data for this study was obtained from the eICU
Collaborative Research Database (eICU-CRD) [17], a multi-
center critical care database supported by Philips Healthcare
and the Laboratory for Computational Physiology [18] at the
Massachusetts Institute of Technology. eICU-CRD comprises
200,859 ICU stays, from 166,355 hospital stays for 139,367
unique patients admitted to one of 335 ICUs at 208 hospitals
across the United States between 2014 and 2015.

To develop the predictive mortality prediction models, we
included the 32 variables that are used to calculate the Acute
Physiology and Chronic Health Evaluation (APACHE) IV
[19] score for estimating patient severity of illness. These
variables include patient demographics, ICU admission di-
agnosis, chronic health condition, the elective surgery status,
admission source, and physiologic and laboratory variables
from the first 24 hours of the ICU stay. We used one-hot en-
coding to convert categorical data to dummy variables and to
minimize the effect of previous ICU admissions for patients
with multiple ICU stays, only the first stay was included in
the analysis. To mitigate the bias resulting from nonrandom
missing data (missing values rates from 0.1% to 79%), we
used Multivariate Imputation by Chained Equations (MICE)
[20]. The continuous features of the resulting arrays were
then standardized into z-scores by subtracting the mean and
scaling each feature to unit variance.

To address the class imbalance problem of the eICU
dataset in terms of the distribution of in-hospital mortality
outcome (death: 91% (118,994), alive: 9% (11,792)), we
employed the Synthetic Minority Over-sampling TEchnique-
Nominal Continuous (SMOTE-NC) [21] approach, which
oversamples the minority classes by creating synthetic sam-
ples based on feature-space (rather than data-space).

B. Model Development

To mitigate the risk of over-fitting and ensure that our
results are not biased towards a specific learning algorithm,
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TABLE I: Comparison of the normal and pruned datasets for different predictive models.

Models Precision Recall Specificity F1 AUC IBA*
Mixed Pruned Mixed Pruned Mixed Pruned Mixed Pruned Mixed Pruned Mixed Pruned

Logistic Regression 89% 95% 85% 93% 58% 73% 87% 94% 82% 95% 49% 69%
KNN 90% 95% 76% 90% 71% 84% 81% 92% 79% 92% 54% 76%
Random Forest 90% 95% 91% 95% 44% 63% 91% 95% 87% 96% 39% 62%
XGBoost 91% 96% 90% 96% 54% 65% 90% 96% 87% 96% 41% 64%
AdaBoost 90% 95% 85% 93% 63% 78% 87% 94% 84% 96% 54% 73%
ExtraTrees 89% 95% 90% 95% 41% 54% 90% 95% 85% 96% 36% 53%
*IBA: Index of Balanced Accuracy

we developed and evaluated a representative set of standard
ML classifiers, including generalized linear (Logistic Regres-
sion (LR)), kernel-based (Support Vector Machines (SVM)),
decision-tree based (Random Forest (RF), AdaBoost, XG-
Boost, and ExtraTrees), and sample-based (K-Nearest Neigh-
bours (KNN)) classifiers. Hyperparameters for each method
were determined using 10-fold cross-validation Bayesian
Optimization [22]. For each learning pipeline, we first split
the data into training and test subsets. We then applied
each of the imputation, standardization, and oversampling
processes to the corresponding training set.

C. Uncertainty Detection and Evaluation Results

1) Preliminary Analysis: As mentioned earlier, in this
study, by uncertain samples, we refer to samples that are
more challenging to classify and may need to be flagged
for review by domain experts. Thus, before applying CL to
our learning phase, we first trained and tested all the models
listed in Section III-B and, for each sample, identified the
proportion of models that misclassified the sample (i.e. dif-
ficulty index [23]). Out of 26,158 samples in our testing set,
3.3% (866) of patients were misclassified by all the classifiers
listed in Table I, from which 439 samples belong to y∗i = 0
and 427 belong to y∗i = 1. For the paired comparisons,
this number changes from 6% (1,587, ET-KNN) to 10%
(2,522, LR-AdaBoost), with the majority of the misclassified
samples are from the 'expired' category. This indicates the
difference in the discrimination ability of learning models
to handle challenging cases. To further investigate this, we
analyzed the testing set for concept drift [24] and applied
the t-distribution Stochastic Neighbour Embedding (t-SNE)
algorithm for different values of perplexity [25] to reveal
the structure of the datasets comprised of samples that were
misclassified or correctly classified by all of the classifiers.
Our results show no covariate shift and, as illustrated in
Figure 2, there is no distribution change in the testing set.

2) Prediction Results: Table I presents the comparisons
between the performance of the classifiers for two variants
of the training dataset (i.e. mixed and pruned). As shown,
classifiers trained on the pruned dataset consistently per-
formed better compared to classifiers trained on the mixed
dataset across all classifiers, with over 4% improvement in
precision, recall, F1, and AUC metrics. Moreover, the IBA
score improvement implies a more balanced contribution
of both classes into the overall model’s accuracy. These
experimental results substantiate the value of cleaned data
(pruned data) when predicting patient outcomes using ML.

We also defined a third class called 'challenging' that
represents all the uncertain samples detected by CL. In Table

II, we report the results of our best performing classifier in
detecting the uncertain cases and compare the performance
of the model in predicting mortality in both binary and
multi-class classification tasks. In comparison, to predict
mortality, the model trained on the dataset with flagged
'uncertain cases' outperforms the binary classifier, with 4%,
15%, and 8% improvement in precision, recall, and F1 score
of the positive class, respectively. Adding the knowledge of
label uncertainty to the classifiers resulted in a significantly
lower number of false negatives (FNs) and a slightly lower
number of false positives (FPs), indicating the need for
detecting uncertain cases before training predictive models
for mortality prediction (figures 3a and 3b).

IV. DISCUSSION AND CONCLUSIONS

In this paper, we applied confident learning to the mortality
prediction problem and evaluated the performance of five
machine learning models (with different architectures) on
two training datasets (i.e. mixed and uncertain samples
pruned). The results of our study show that filtering out
a subset of the training set with uncertain samples and
training machine learning models on a clean dataset consis-
tently improved the performance of our models in predicting
mortality for critically ill patients. The significance of these
results lies not only in improving the accuracy of models but
in increasing the confidence, quality, and interpretability of
clinical decisions made based on these results. Moreover, we
incorporated the information of sample uncertainty into the
training phase by defining a third class called 'challenging'
and evaluated the performance of the XGBoost model in
predicting mortality and challenging samples. As the samples
assigned to the 'challenging' category were flagged based on
the joint probability of aleatoric and epistemic uncertainties,
the results of this multi-class classification task not only
improved the discrimination ability of our models but can
help identify patients for whom more information is required
for better planning and clinical decision making.

These findings motivate the need for evaluation metrics
that incorporate sample uncertainty into their performance
quantification. The widely used metrics such as the area
under the receiver operating characteristic curve (AUC),
precision, recall, specificity, and F1, despite their simplicity,
weight all samples equally and do not reflect the ability
of predictive models in classifying uncertain samples. Also,
the prospective evaluation of using confident learning in
quantifying and communicating uncertainty in medical ML
models requires further investigation, as a significant invest-
ment may be needed to integrate and deploy the model
into real-world contexts considering the issues related to
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TABLE II: Comparison of the mixed and flagged datasets for XGBoost classifier.

Models Precision Recall Specificity F1 AUC IBA
Mixed Flagged Mixed Flagged Mixed Flagged Mixed Flagged Mixed Flagged Mixed Flagged

Alive 95% 94% 94% 95% 50% 49% 94% 95% 87% 88% 49% 49%
Expired 46% 50% 50% 65% 94% 96% 48% 56% 87% 96% 45% 60%
Challenging – 31% – 14% – 98% – 20% – 77% – 13%
Micro Average 91% 89% 90% 90% 54% 54% 90% 89% 96% 98% 41% 48%

(a) Two-class classification AUC (mixed dataset) (b) Three-class classification AUC

Fig. 3: The performance of mortality prediction for mixed and labeled challenging cases

data quantity and quality in different clinical workflows
[26], [27]. Finally, as the uncertain cases in this study were
identified and justified based only on theoretical methods
(i.e. augmented ML models), the validation of these samples
by domain experts (e.g. physicians) will shed more light
on the prospective application of this approach in mortality
prediction of critically ill patients.
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