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Abstract— Ultrasound imaging of the spine to diagnose the 

severity of scoliosis is a recent development in the field, offering 

3D information that does not require a complicated procedure 

of reconstruction, unlike with radiography. Determining the 

severity of scoliosis on ultrasound volumes requires labelling 

vertebral features called laminae. To increase accuracy and 

reduce time spent on this task, this paper reported a novel 

custom centroid-based distance loss function for lamina 

segmentation in 3D ultrasound volumes, using convolutional 

neural networks (CNN). A comparison between the custom and 

two standard loss functions was performed by fitting a CNN with 

each loss function. The results showed that the custom loss 

network performed the best in terms of minimization of the 

distances between the centroids in the ground truth and the 

centroids in the predicted segmentation. On average, the custom 

network improved on the total distance between predicted and 

true centroids by 33 voxels (22%) when compared with the 

second best performing network, which used the Dice loss. In 

general, this novel custom loss function allowed the network to 

detect two more laminae on average in the lumbar region of the 

spine that the other networks tended to miss. 

I. INTRODUCTION 

Scoliosis is a three-dimensional spinal condition where the 
spine is characterized by lateral curvature coupled with 
vertebral rotation. Adolescent idiopathic scoliosis (AIS) is the 
most common form of this condition, affecting 1-3% of 
adolescents aged 10 to 16 years old. There is no known cause 
for it. Typically, radiography is employed to assess the severity 
of AIS, requiring a clinician to manually measure many 
parameters that describe the structural changes [1]. Due to the 
sheer number of patients that clinicians see per clinic, 
measuring these parameters is time consuming for clinicians. 
Automating the measurement process would minimize errors 
from human judgment and significantly reduce time spent on 
this task, freeing up clinicians’ time to see more patients [2]. 
Additionally, taking radiographs exposes patients to ionizing 
radiation, which may increase the risk of cancer [3]. 
Consequently, the feasibility of ultrasound for scoliosis is 
currently being investigated and has been found to be 
comparable to radiographic measurements in terms of 
accuracy and reliability [4].  

To facilitate measurement of scoliosis parameters on 
ultrasound scans, pairs of vertebral landmarks, called laminae, 
need to be marked on 17 vertebrae, meaning that 34 laminae 
must be identified per scan. All three views (coronal, sagittal, 
and axial) are crucial to identifying laminae positions. On the 
coronal projection of ultrasound volumes, the spinous process 
column, indicated by a dark curve in the middle, is used to 
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estimate the locations of the pairs of laminae by identifying 
isolated bright regions. Each pair of laminae are generally 
equidistant from the spinous process and form a line when 
joined that is perpendicular to the dark spinous process 
column. The axial view is then used to confirm the precise 
locations by identifying two bright lines, as the lamina regions 
have a relatively flat surface. These flat surfaces reflect the 
ultrasound waves the strongest. Finally, the sagittal projection 
is used to confirm that all the laminae pairs follow a smooth 
curve as you move down the spine. An ultrasound scan, along 
with the different views, is illustrated in Fig. 1a. Once the 
laminae are identified, the center of lamina method can be used 
to assess the severity of scoliosis [5]. It should be emphasized 
that only the centroids of the labelled regions are relevant for 
measurement. This makes the task of labelling laminae quite 
unique in the medical segmentation field. If the centroids of 
the labelled laminae are correct, the size and shape of the 
labelled regions do not actually matter. 

The convolutional neural network (CNN) is a type of 
neural network that is commonly used for image and volume 
segmentation [6]. A major design aspect of CNNs is the loss 
function, which is the error function that the algorithm tries to 
minimize when comparing the predictions of the network with 
the ground truths. The standard loss functions for 
segmentation are binary cross entropy and Dice loss [7]. 
However, custom loss functions tailored for specific 
applications have become more common to generate as precise 
a segmentation as possible. This is true particularly for medical 
segmentation, as these segmentations are often used in patient 
diagnoses [8, 9]. Due to the success of custom loss functions 
in medical image segmentation found in the literature and the 
unique nature of lamina segmentation where the centroids of 
the connected components take precedence, this paper 
reported on the development of a custom loss function for 
lamina segmentation in 3D ultrasound volumes using CNNs 
and evaluated its performance with respect to CNNs fit using 
Dice and binary cross entropy loss functions. 

II. DATA 

A total of 70 ultrasound scans on children with AIS were 
acquired at the local scoliosis clinic. Ethics approval was 
granted from the local research health ethics board. All 
subjects signed written consents prior to participating in the 
study. The ultrasound volumes were processed using a 
completely automatic procedure. First, the top layer of voxels 
was cropped to remove the reflections from the skin, muscles, 
and fat that make the volumes noisy. The volumes were then 
narrowed to the region of interest by first identifying the dark 
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spinous process column and then cropping around it. The 
effect of the processing steps is illustrated on the coronal 
projection in Fig. 1b, 1c, and 1d. The processed volumes were 
then labelled using a custom-built volume labelling graphical 
user interface (GUI). These 70 scans were split randomly into 
50 training, 10 validation, and 10 test volumes. 

The ultrasound volumes and labels were then pre-
processed for input into the CNN. They were first scaled to the 
size 384x96x48, roughly one third the dimensions of the 
average ultrasound volume. The input volumes were scaled 
using bilinear interpolation, and the labels were scaled by 
determining the centroids of the connected components in the 
unscaled volume, mapping these centroid coordinates to the 
scaled-down size, and centering a 3x3x3 voxel cube around 
each centroid. This cube was used instead of just a single point 
to maximize the chances of the network predicting voxels that 
were at least close to the lamina and was found to work better 
in practice. The scaled volumes were then normalized to zero 
mean and unit variance. To increase diversity of the training 
set, a data augmentation method of randomly flipping along 
the sagittal plane was used. This has the effect of switching left 
and right on the coronal projection. 

III. METHODS 

A. Loss functions 

 There are two common loss functions used for image 
segmentation: weighted binary cross entropy (WBCE) and 
Dice loss. WBCE is a voxel-wise loss function stemming from 
information theory that aims to minimize the difference 
between two probability distributions. Dice loss is defined as 
1 minus the Dice coefficient [10]. This coefficient D measures 
the degree of overlap between the ground truth and prediction 
mask. This loss function is defined as: 

 ℒ𝐷 = 1 −
2∑ 𝑡𝑖𝑝𝑖

𝑁𝑉
𝑖=1

∑ 𝑡𝑖
𝑁𝑉
𝑖=1

+∑ 𝑝𝑖
𝑁𝑉
𝑖=1

 (1) 

where N is the number of voxels in the 384x96x48 volumetric 
space V, and t and p are the values of the voxels, indexed by i, 
in the ground truth and prediction, respectively. 

A novel centroid-based loss function that encourages 
minimizing the distance between centroids of the connected 

components in the ground truth and prediction was developed. 
To take advantage of the available 3D information, these 
distances were computed on the coronal and sagittal 
projections. The projections were used instead of the entire 
volume to reduce training time. First, the raw prediction was 
turned into a binary array by thresholding the probabilities by 
0.5, and the coronal and sagittal projections of both ground 
truth and prediction were calculated. Let the subscripts c and s 
denote the coronal and sagittal projections, respectively. The 
connected components for ground truth and prediction in both 
projections were then determined, and all centroids were 
calculated. Let the list of centroids of these connected 
components be denoted as Γ and Φ and a centroid in these lists 
as γ and φ for ground truth and prediction, respectively. We 
define a distance penalty as the mean of the minimum 
distances from all centroids in Γ to all centroids in Φ. The 
distance penalty d for each projection is defined as: 

  𝑑𝑐 =
1

𝑁Γ𝑐
∑ [ min

𝑗=1…𝑁Φ𝑐

{|γ𝑐𝑖 −φ𝑐𝑗|}]
𝑁Γ𝑐
𝑖=1

 (2) 

  𝑑𝑠 =
1

𝑁Γ𝑠
∑ [ min

𝑗=1…𝑁Φ𝑠

{|γ𝑠𝑖 − φ𝑠𝑗|}]
𝑁Γ𝑠
𝑖=1

 (3) 

where NX is the number of centroids in the list X. With these 
individual distance penalties defined, the distance loss is 
formulated as: 

  ℒ𝑑 = 𝑑𝑐 + 𝑑𝑠 (4) 

The distance loss defined above only considers the minimum 
distances, meaning that all φ that are not closest to any γ do 
not contribute to the distance loss at all. Consequently, this 
could lead to the network tending to predict many false 
positives. To discourage this, a term penalizing the difference 
between the number of connected components in Γ and Φ was 
added. How far these false positives are from a γ does not 
matter for this application; therefore, distance was not 
involved in this penalty term. This penalty term is defined as: 

 ℒ𝑁 = max{1, |𝑁Γ𝑐 − 𝑁Φ𝑐| + |𝑁Γ𝑠 − 𝑁Φ𝑠|} (5) 

Finally, maximizing the amount of overlap is still desired, and 
so the last term added to the centroid loss is the Dice loss. 
Combining these terms, the final loss is defined as: 

 ℒ𝑐 = ℒ𝐷ℒ𝑑ℒ𝑁 (6) 

B. Network Architecture and Parameters 

The CNN architecture used for segmentation in this paper 
was based on the U-net [11]. This architecture is very common 
in medical image segmentation tasks, as it has worked well in 
practice even with very little training data. For this experiment, 
there were three changes made to vary this architecture. First, 
one less pooling and upsampling stage was used to reduce the 
number of training parameters. Second, because the inputs 
were volumes, all operations (convolution, pooling, and 
upsampling) were replaced with their 3D equivalents. Finally, 
same padding was used, so the volumes remained the same 
size after each convolution. This was implemented because in 
some cases, laminae could exist on the edges of the volumes. 

To improve the generalizability of the model, dropout and 
batch normalization were employed. Dropout was performed 
with a probability of 0.125 after each pooling and upsampling 
layer, and batch normalization was performed after each 

     
 (a) (b) (c) (d) 
Fig. 1. (a) Different views of an ultrasound scan of an AIS patient’s spine 

with a pair of laminae marked as orange circles on the coronal (left), sagittal 

(right), and axial B-mode (bottom) views, (b) original un-processed coronal 
projection, (c) top layer cropped coronal projection, (d) narrowed region of 
interest with dark spinous process column (red) of coronal projection. 
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convolutional layer. The leaky rectified linear unit with an 
alpha value of 0.01 and sigmoidal activation functions were 
used for the hidden layers and output layer, respectively. The 
Adam optimizer was employed with a learning rate of 10-4. 
Due to the sheer size of this network, a batch size of 1 was 
used. The 3D U-net variant architecture is illustrated in Fig. 2. 

C. Experiment 

 To evaluate whether the custom loss function performed 
better than the traditional loss function, three 3D U-net 
variants were fit – Dice loss (D-U-net), WBCE loss (B-U-net), 
and custom centroid-based distance loss (C-U-net). All 
networks were fit for 200 epochs, and model checkpoints were 
used to save the optimal model found during training with 
respect to the loss on the validation set. The minimum required 
number of epochs to train was determined by training each 
type of network for 1500 epochs and analyzing the validation 
loss curves during training. For all cases, the validation loss 
was lowest before 200 epochs. The results reported in this 
paper correspond to the optimal models taken at the lowest 
validation loss.  

 There are three metrics used to compare performance 
between the two networks. The first is the Dice coefficient D. 
The second metric d3D is similar to the distance penalty dc and 
ds, but computed using the whole 3D volume instead: 

 𝑑3𝐷 =
1

𝑁Γ3𝐷
∑ [ min

𝑗=1…𝑁Φ3𝐷

{|γ3𝐷𝑖 − φ3𝐷𝑗|}]
𝑁Γ3𝐷
𝑖=1

 (7) 

The third metric is the difference between the number of 
connected regions in the predicted segmentation and the 
number of connected regions in the ground truth Δ. Again, this 
is computed for the 3D volume instead of just the projections: 

 Δ = |𝑁Γ3𝐷 − 𝑁Φ3𝐷| (8) 

D. Implementation 

All code for this experiment was programmed in Python 

with the networks being implemented using the TensorFlow 

library. The networks were trained on the supercomputing 

hub at the University of Alberta with an NVIDIA Tesla V100 

16GB GPU and an Intel Xeon Gold 6138 dual processor. 

IV. RESULTS 

 The training times for the D-U-net, B-U-net, and C-U-net 
over 200 epochs were 253, 254, and 259 minutes, respectively. 
The D-U-net converged in 80 epochs, the B-U-net in 176, and 
the C-U-net in 95 with respect to the validation set loss. 

 Regarding the test set, the results for the networks’ 
performance are reported in Table I. The C-U-net’s centroid 
placements were on average a total of 33 voxels closer to the 
ground truths’ centroids when compared with D-U-net and 
129 voxels closer when compared with B-U-net. Box and 
whisker plots of the test set results, with the whiskers 
representing 1.5x the interquartile range, are shown in Fig. 3a. 

 One-tailed paired Student’s t-tests were performed on the 
differences between the performance metrics in the test set to 
determine statistical significance. These tests were conducted 
between the C-U-net and D-U-net and the C-U-net and B-U-
net. The C-U-net performance improvement was statistically 
significant (p < 0.05) for all three metrics when compared with 
B-U-net, while in the case of D-U-net, this occurred only for 
the d3D metric. 

 Finally, the segmentations for one of the test volumes are 
illustrated in Fig. 3b and 3c. The segmentations for the B-U-
net are not shown here because it performed significantly 
worse than the other two networks. 

V. DISCUSSION 

A. Analysis of Results 

 The B-U-net was outperformed by the other two U-nets 
overall. Its average metric values were all worse than the other 
two networks, and it underperformed in terms of d3D for every 
individual test volume as well. This was expected since it has 
been found that metric-sensitive losses generally perform 
better than voxel-wise losses in medical image segmentation 
[12]. Between the D-U-net and C-U-net, the difference 
between D and Δ distributions is not statistically significant. 
However, the improvement in the d3D performance was found 
to be statistically significant. This demonstrates that d3D 
minimization was made without significantly impacting D, 
highlighting that D is not a good sole metric for evaluating 
performance in this application. The C-U-net improved upon 
the d3D for eight out of the ten cases. The two cases where D-
U-net outperformed C-U-net only resulted in an improvement 
of less than ten voxels. Two of the cases where the C-U-net 
outperformed the D-U-net saw significant improvement, with 
one case resulting in an improvement of over 100 voxels. 

 The U-net segmentations are typically more accurate in the 
thoracic region of the spine. This is because the thoracic region 
of the spine is closer to the skin, while the lumbar region has 
thicker muscle, which attenuates the ultrasound signals more. 

 

Fig. 2. U-net architecture diagram with blue boxes representing feature 

maps and white boxes representing copied feature maps. The number of 

feature maps is above the box and the size of the feature maps is to the left 
of each convolutional block. 

 
 
 
  
 
  
 

 
 
 
  
 
  
 

     

      

 
 
  
 
  
 

      

 
 
  
 
  

   

      

      

     

 
 
  
 
  
 

 
 
 
  
 
  
 

 
 
 
  
 
  
 

   

                      

             

              

             

          

                                    

TABLE I. PERFORMANCE METRIC VALUES FOR THE TEST SET 

 
D d3D Δ 

Mean St. D Mean St. D Mean St. D 

D-U-net 0.407 0.050 151.1 63.7 4.2 3.6 

B-U-net 0.280 0.100 247.2 93.6 9.3 5.1 

C-U-net 0.412 0.050 118.1 40.8 3.4 3.2 
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The C-U-net tends to handle the noisy signals better than the 
D-U-net. For example, in Fig. 3c, the C-U-net segments a full 
pair of laminae perfectly in the lumbar region that the D-U-net 
completely misses (red box in Fig. 3b and 3c), and this trend 
of performing better in the lumbar region was present in the 
other test volumes as well. 

 When evaluating the absolute quality of the lamina 
segmentations, we value avoiding false negatives the most, 
even at the expense of obtaining more false positives. For this 
application, these errors are defined as illustrated in Fig. 4. The 
reason for prioritizing false negatives is because it is much 
easier to eliminate false positives from contention rather than 
trying to identify false negatives with no thresholded voxels 
associated with it. Based on an inspection of the test volume 
segmentations, the D-U-net missed five laminae per scan on 
average, whereas the C-U-net missed only three. Most of these 
false negatives were in the lumbar region of the spine. 
Although missing laminae is not ideal, an experienced 
operator faces the same challenges in labelling the lumbar 
laminae. This means that an algorithm that eliminates false 
positives and identifies false negatives through post-
processing can be designed if planned network improvements 
do not appreciably affect the segmentation quality. 

B.  Limitations 

 Hyperparameter optimization is one design procedure that 
was not fully explored in this experiment. The hyperparameter 
combination used was merely the best one out of various 
common combinations that were attempted. A hyperparameter 
search algorithm or grid search should be conducted to 
optimize the network; however, this comes at significant 
computational costs, as 3D CNNs are being trained. Another 
limitation of this study is the small number of volumes used in 
training and evaluation. However, as a pilot study, this study 
demonstrated that the proposed method has the potential to 

automatically segment the entire spine. Labelling more 
volumes or implementing more data augmentation methods 
will be the next step to fully validate the proposed method. 

VI. CONCLUSION 

 This study introduced a novel centroid-based distance loss 
function designed for lamina segmentation in 3D ultrasound 
scans of AIS spines. The U-net CNN architecture, commonly 
used in medical segmentation tasks, was used to verify the 
validity of the loss function, with a 3D U-net variant 
architecture being fit for three different loss functions: Dice 
(D-U-net), WBCE (B-U-net), and centroid-based distance loss 
(C-U-net). The C-U-net yielded the lowest distance between 
centroids from the ground truth and predicted segmentation in 
the test set, and this improvement was found to be statistically 
significant. The improvement of using the C-U-net was seen 
primarily in the lumbar region of the spine, where fewer false 
negatives were predicted. Overall, the final segmentations 
were sufficiently accurate to move towards post-processing 
including elimination of false positives and identification of 
false negatives. 
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 (a) (b) (c) 
Fig. 3. (a) Box and whisker plots of d3D (top) and Δ (bottom) for the test set 

under different U-nets, (b) D-U-net segmentation (blue) of a test volume 

overlaid with ground truth labels (orange), (c) C-U-net segmentation (green) 
of a test volume overlaid with ground truth labels (orange). 

 

 
Fig. 4. An example of a false negative (FN), false positive (FP), and true 

positive (TP) with ground truth in orange and prediction in green. 
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