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Abstract— The commonly used fixed discrete Kalman filters 

(DKF) in neural decoders do not generalize well to the actual 

relationship between neuronal firing rates and movement 

intention. This is due to the underlying assumption that the 

neural activity is linearly related to the output state. They also 

face the issues of requiring large amount of training datasets to 

achieve a robust model and a degradation of decoding 

performance over time. In this paper, an adaptive adjustment is 

made to the conventional unscented Kalman filter (UKF) via 

intention estimation. This is done by incorporating a history of 

newly collected state parameters to develop a new set of model 

parameters. At each time point, a comparative weighted sum of 

old and new model parameters using matrix squared sums is 

used to update the neural decoding model parameters. The 

effectiveness of the resulting adaptive unscented Kalman filter 

(AUKF) is compared against the discrete Kalman filter and 

unscented Kalman filter-based algorithms. The results show that 

the proposed new algorithm provides higher decoding accuracy 

and stability while requiring less training data. 

I. INTRODUCTION 

In brain-machine interfaces (BMI), the conventionally 
used linear algorithms for neural decoding such as a linear 
discrete Kalman filters (DKF) utilizes methods that assumes a 
linear relationship between the neural activity and desired 
output [1]. Non-linear algorithms are generally considered to 
be more superior to linear decoders due to their ability to 
represent the true relationship between neural activity and 
desired output more accurately [2]. In particular, the unscented 
Kalman filter (UKF) is one of the most favored choice for non-
linear neural decoding algorithms as the UKF is able to 
perform non-linear state estimations [3] while remaining 
computationally inexpensive compared to other non-linear 
models for online closed-loop neural decoding control [4]. 

However, the use of UKF still does not address the issues 
of requiring a large amount of training dataset in order to 
produce a robust model for accurate decoding [5] and the fixed 
nature of the model would lead to degradation of the model’s 
accuracy over time [6]. These downsides associated with the 
implementation of the UKF can result in long training time for 
the user and decrease in the efficacy of the BMI over time. 

In this paper, an adaptive unscented Kalman filter (AUKF) 
will be developed through the implementation of an adaptive 
adjustment to the UKF based on intention estimation. The 
adaptive modification is made through a combination of two 
methods. Firstly, the use of intention estimation at each time 
point using the user’s current actuator position and the ideal 
target position to approximate the ideal movement vector of 
the actuator. Secondly, a matrix variable is added to contain 
the history of neural firing rates in a set of consecutive time 

 
 

points. The two methods combined allows for an adaptive 
tuning of the model that is easy to implement and 
computationally cheap for real-time online neural decoding. 

Similar intention estimation methods have been used 
earlier in producing an adaptive DKF such as the recalibrated 
feedback intention-trained Kalman Filter (reFIT-KF) [7]. 
However, key differences in the proposed method include the 
use of a non-linear filter to perform state estimation as well as 
the ability for the learning rate to tune itself according to the 
performance of the user. The proposed algorithm also displays 
low run-time while utilising adaptation on a high nth- order 
UKF. Although other forms of adaptive filters exist, many of 
them have fixed learning rate algorithms or utilize linear 
regression methods [8]. 

II. EXPERIMENTAL SETUP 

In this study, a macaque (Macaca fascicularis) is trained 
to perform a cursor movement task. The macaque operates a 
joystick control capable of 360-degree motion to move a 
virtual cursor on a 2-dimensional screen. The goal is 
positioned some distance away from the cursor start position. 
The controlled virtual cursor starts at the centre of the screen 
and the target locations can be any one of the 8 pre-determined 
goals located radially around the centre of the screen. 

All animal procedures were approved by and conducted in 
compliance with the standards of the Agri-Food and 
Veterinary Authority of Singapore and the National University 
of Singapore Institutional Animal Care and Use Committee 
(NUS IACUC R18-0295). The procedures also conformed to 
the recommendations described in Guidelines for the Care and 
Use of Mammals in Neuroscience and Behavioral Research 
[9]. 

 

Figure 1.  (A) Joystick control of virtual cursor for cursor 

movement. (B) The cursor movement task involves moving the 
cursor from the centre to any one of eight target locations. 

 

Multiple electrode arrays are implanted in the macaque in 
the hand/arm area of the primary motor cortex. Following 
which, the macaque is trained to use a joystick to control the 
virtual cursor. During the training, the implanted electrodes 
recorded the multi-unit spiking activity of the neurons. The 
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number of detected spikes is recorded in 100 ms steps in a 500 
ms time window. The total number of these spikes is then 
divided by the length of the window to compute the firing rates 
for the time window.  

The corresponding position of the cursor and joystick 
values are recorded as well. Within a single training session, a 
trial consists of the macaque moving the cursor from the start 
position to the target location. The recorded cursor positions 
can subsequently be plotted out to obtain the trajectory of the 
cursor throughout the training session. 

The recorded neural firing rates during joystick control and 
their corresponding joystick values are subsequently used to 
train the neural decoding models. The neural decoders are 
implemented using MATLAB (Mathworks Inc, 
Massachusetts, USA). In total, four sessions of joystick control 
data are used for the training and testing of the neural decoders 
in this study. Of the four sessions, three sessions contained 16 
successful trials, and one session contained 40 successful 
trials. 

III. DISCRETE KALMAN AND UNSCENTED KALMAN FILTERS 

A. Discrete Kalman Filter 

A typical linear DKF can be broken down into two main 
steps, the prediction step, and the updating step [10]. In the 
prediction step, the a priori estimate of the predicted state, 𝑥𝑡̅,  
is obtained through applying a linear state model on the latest 
known state estimate 𝑥𝑡−1. The predicted error covariance of 
the matrix, 𝑃𝑡̅ is then computed. 

In the updating step, the algorithm will correct the 
predicted state using Bayesian methods. The correction is done 
by using the observed measurements at the current time point 
and update the estimated state through computation of the 
posterior state estimate given the observed measurements. Full 
details of the DKF equations can be found in [10]. 

B. Unscented Kalman Filter 

The UKF follows a similar mathematical process as the 
DKF. However, where the UKF differs from the DKF is that 
rather than assuming an underlying linear relationship, the 
UKF uses a non-linear function on Gaussian distributed 
random variables to calculate approximate solutions to the 
estimated state and error covariance [11]. 

Although the prediction step in the UKF normally utilizes 
a non-linear state model to predict the new state estimate and 
error covariance, for the purposes of this study the linear state 
model performs better and offers greater stability in translated 
movement. Thus, the prediction step of the UKF in this study 
is identical to that of the DKF. 

For the updating step, the UKF generates a series of sigma 
points from the predicted state estimate and the state error 
covariance. Non-linear estimation is achieved by passing the 
original sigma points through a fixed non-linear function. The 
neural tuning model is then used to calculate a new best 
approximate gaussian from the transformed sigma points. The 
non-linear function used in this study relates the axis velocities 
of the cursor to the magnitude and is given by: 

 𝜎 =  (𝑉𝑥  , 𝑉𝑦  , √𝑉𝑥
2 + 𝑉𝑦

2) () 

 The mean, covariance of the predicted neuronal firing 
rates and the state observation cross-covariance are then 
computed using the sigma points and the noise covariance of 
the observation model via a weighted sum. 

Similar to the DKF, the Kalman gain is computed through 

the use of the predicted state error covariance and state 

observation cross-covariance. Full details of the original UKF 

equations can be found in [11]. 

IV. INTENTION ESTIMATION BASED MACHINE LEARNING 

The adaptive modifications consist of two main parts. In 
the first part, the algorithm will approximate the movement 
intention of the subject based on the user’s current position and 
the target position. In the second part, the algorithm will 
update the parameters using the newly measured neural firing 
rates and the newly calculated estimated intent of movement. 
This will be done through an update function which will 
compute a new set of parameters for the algorithm to use in 
subsequent steps of the process. 

A. Intention Estimation 

In the context of a cursor movement task via controlling a 
cursor on a 2D screen to reach a target, the ideal movement to 
reach the target location will be a straight line from the cursor’s 
present location to the target location. 

For the purposes of intention estimation, the intended 
movement of the cursor by the subject at each time point could 
be ideally approximated to be equal to that of the straight line 
towards the target location. This is a fair approximation since 
it can be assumed that for majority of the cursor movement 
task, the subject is trying to reach the target as fast as possible 
to maximise its rewards obtained. 

Thus, since for a majority of the time the actual intended 
movement of the cursor can be closely approximated by the 
ideal straight-line movement towards the target location, the 
brain signals recorded at each time point can be said to closely 
represent the neural firing rates for the ideal straight-line 
movement.  

The current position of the cursor at any point in time can 
be denoted as a 2D vector coordinate pair, (𝑋𝑡 , 𝑌𝑡). The vector 
coordinates of the target location can be similarly denoted as a 
fixed coordinate pair (𝑥𝑐 , 𝑦𝑐), where 𝑥𝑐 and 𝑦𝑐 are fixed 
constants respectively representing the location of the target 
along the X and Y axis of the screen. The target location 
coordinates remain fixed for a single cursor movement task 
and would change for every new cursor movement task. 

The estimated intended movement vector can then be 
computed using a simple calculation given by: 

 (𝑉𝑥 , 𝑉𝑦) = (𝑥𝑐 , 𝑦𝑐)  − (𝑋𝑡 , 𝑌𝑡) () 

Where 𝑉𝑥 and 𝑉𝑦 are the estimated intended velocities of the 

cursor in the X and Y axis respectively. 𝑉𝑥 is taken to be 
positive in the right direction and 𝑉𝑦 in the upwards direction. 

In the instance whereby the cursor has entered within a 
predefined distance from the centre of the target location as 
shown by the blue circle in Fig. 3, the neuronal firing signal 𝑦𝑡  
can be approximated to be a stopping intention and its 
associated velocity vectors 𝑉𝑥 and 𝑉𝑦 are both set to be 0. 
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Figure 2. Example ideal movement vector (green) by the cursor on a 

2-Dimensional screen at different timepoints in a single task. 
 

The estimated intended velocity vector is then stored into 
a matrix, 𝑉𝑡 , containing the vectors at time t through a series 
of concatenation. The intended velocity vector can then be 
paired with the measured neuronal signals at time t to form a 
single data pair linking the estimated intended velocity vector 
to the neuronal firing rates. To ensure robustness of the re-
computed model parameters, a total of 100 data pairs is 
collected through concatenation of the data at each timepoint 
and stored in a matrix to be used for the adaptive learning 
function. At every iteration, the algorithm computes and 
collects a new set of neuronal firing rates and estimated 
intended velocity vector. Once 100 data pairs have been 
reached, the oldest data pair containing 𝑉𝑡−99 and its associated 
neuronal firing rates 𝑦𝑡−99 are removed and the newest pair is 
included. Thus, the updating algorithm achieves a history of 
100 data pairs from the most recent timepoint t to t-99.  

B. Auto-tuning of Algorithm Parameters 

The AUKF performs the auto-tuning of the algorithm 
parameters at the end of a single iteration. The update function 
takes in the matrices containing the 100 data pairs of neuronal 
firing rates and estimated intended velocity as well as the static 
parameters for updating, namely the neural tuning model (h), 
the noise covariance of the observation model (W), the linear 
state model (A), and the associated noise covariance (Q). Since 
non-linear estimation is achieved by (1), the neural tuning 
model portion can be adapted through linear regression. 

The update algorithm first computes a set of new 
parameters using solely the 100 data pairs given. First, the 
neural tuning model and its noise covariance are calculated by 
the following equations: 

 ℎcalc = 𝑦𝑡..𝑡−99𝑉𝑡...𝑡−99
𝑇(𝑉𝑡...𝑡−99𝑉𝑡...𝑡−99

𝑇)−1 () 

 𝑊𝑐𝑎𝑙𝑐 =
(𝑦𝑡...𝑡−99−ℎ𝑉𝑡...𝑡−99)(𝑦𝑡...𝑡−99−ℎ𝑉𝑡...𝑡−99)𝑇

𝑁
 () 

Where V represents the estimated intended velocity coordinate 
pair, N represents the history length and ℎ𝑐𝑎𝑙𝑐 and 𝑊𝑐𝑎𝑙𝑐 are 
the newly calculated neuronal observation model and its 
associated noise covariance, respectively. 

Next, the state model and its noise covariance are then 
calculated using the following equations: 

 𝐴𝑐𝑎𝑙𝑐 = 𝑉𝑡-1...𝑡−99𝑉𝑡...𝑡−98
𝑇(𝑉𝑡...𝑡−98𝑉𝑡...𝑡−98

𝑇)−1 () 

 𝑄𝑐𝑎𝑙𝑐 =
(𝑉𝑡-1...𝑡−99−𝐴𝑉𝑡...𝑡−98)(𝑉𝑡-1...𝑡−99−𝐴𝑉𝑡...𝑡−98)𝑇

𝑁−1
 () 

Where 𝐴𝑐𝑎𝑙𝑐  and 𝑄𝑐𝑎𝑙𝑐  are the newly calculated state model 
and its noise covariance. 

The set of calculated model parameters can then be used to 
update the original set of parameters through a weighted sum: 

 𝑆𝑖+1 = (1 − 𝛼)𝑆𝑖 + 𝛼𝑆𝑐𝑎𝑙𝑐  () 

Where 𝑆𝑖+1 represents the newly computed set of model 
parameters using the old set of parameters, 𝑆𝑖, and the latest 
calculated set of parameters, 𝑆𝑐𝑎𝑙𝑐 .  

The weight, , is computed anew at each iteration using 
the sum of squared errors between the old and calculated 

neuronal observation models. The weight, , is thus given by: 

 𝛼 = [𝑎(1 −
𝑆𝑆𝐸

𝑏
)]−1 () 

Where a and b are constants and have a numerical value 
greater than 1. The term SSE represents the sum of squared 
errors between the old and calculated neuronal observation 
models within a single iteration of the UKF algorithm. 

 In this manner, the learning rate of the algorithm changes 
accordingly to how different the old and calculated neural 
observation models are at each iteration of the UKF algorithm. 
A bigger difference between the observation models would 

result in a larger sum of squared errors and therefore  will 
increase but its maximum value will remain below 1. As a 
result, the weight given to the newly calculated parameters 
increases whenever the algorithm detects a bigger difference 
in the old and calculated observation models. 

Once the weight has been calculated, the original 

parameters are then updated accordingly using the weighted 

sum method in (7). The updated parameters are subsequently 

returned to the algorithm to be used in the following iteration, 

thus the UKF algorithm uses a re-tuned set of parameters for 

online neural decoding which would have been otherwise 

static in the standard UKF algorithm. 

V. TESTING RESULTS AND DISCUSSION 

The AUKF developed is tested alongside the DKF and the 
UKF algorithms in an offline simulation on MATLAB using 
pre-recorded brain signals of a monkey performing a simple 
linear cursor movement task using joystick control to move a 
virtual cursor towards a target location. A total of four sessions 
are used for the testing with three sessions containing 16 
successful trials, and one session containing 40 successful 
trials. 

 For each of the filters, a four-fold cross validation is done 
whereby the starting algorithm model parameters are trained 
using only a single session’s worth of data, leaving three other 
sessions available for testing. This is to emulate the usage of 
the BMI with low amounts of training data for the purpose of 
reduced training timing. The trained filter is then tested on the 
other three trials that are not used in the training phase. The 
accuracy is determined by the correlation coefficient in the X 
and Y axis between the recorded joystick values and the 
decoded joystick values. 

Results showed that while the UKF is only slightly 
advantageous over the DKF in terms of neural decoding 
accuracy, the AUKF shows significant decoding performance 
improvements compared to the other two filters. The UKF has 
long been established to be superior to the DKF due to its 
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ability to perform non-linear state estimation [3]. However, 
due to the low amounts of initial training data used for the 
calibration of the models, this leads to poorly trained models 
which would result in worse performing algorithm models in 
both filters. Any benefit that the UKF has over the DKF 
becomes obscured which is reflected in the small difference 
between the poorly trained DKF and UKF. 

 
Figure 3.  Comparison of correlation coefficient values of test 

sessions between the Discrete Kalman Filter, Unscented Kalman 

Filter and Adaptive Unscented Kalman Filter in the X and Y axis. 
 

The advantage for the AUKF under low training scenarios 
is clear where it is able to outperform both the DKF and UKF 
in almost every tested session. This is to be expected since the 
AUKF is able to re-train and update its model towards newly 
received data and therefore an initially poorly trained model 
can be tuned towards new changes. 

The different algorithms are also tested for the average run-
time per time point in each trial across the sessions (Intel Core 
i7-7700HQ 2.8GHz, 2 x 8GB DDR4 RAM). Since the number 
of spikes are recorded using 100 ms steps, a low run-time of 
below 100 ms is necessary to perform online neural decoding 
without experiencing any lag time. 

 

Figure 4.  Comparison in average execution time per iteration. 
 

From the comparisons, the DKF has the fastest runtime 

followed by the UKF and finally the AUKF. This is likely due 

to the higher time complexity of the AUKF algorithm because 

of the adaptive modifications made. Considering the 

inexpensive nature of the modifications, the time increment is 

minimal, and the average runtime remains well below 100 ms. 

Therefore, the AUKF is capable of performing online neural 

decoding with no noticeable lag time. The small increment in 

runtime may be well worth for the ability to continuously 

adapt the model parameters through the AUKF algorithm.  

VI. CONCLUSION 

In this study, we developed an intention estimation based 
adaptive training function that shows how a combination of 
intention estimation and a concatenated history of neural data 
can be used to perform a weighted adjustment of the model 
parameters at every iteration. Through the dynamic adaption 
of the parameters, the algorithm can capture and incorporate 

fresh data and adapt towards changes in the environment in an 
unsupervised manner. This better reflects real-world scenarios 
whereby the usage of BMIs is often under the context of 
constantly changing dynamic environments. An adaptive 
model of the UKF will therefore display superior decoding 
abilities and stability compared to the static model 
counterparts and brings the added benefit of requiring less 
initial training. The offline comparison of the algorithms has 
thus demonstrated that there is promise in working towards 
decoding models capable of adaption and the method proposed 
in this paper is just one of many possibilities. 

Future possible improvements include potentially 
combining intention estimation alongside retrospective 
estimation. The idea of retrospective estimation is like that of 
intention estimation, only that the velocity vectors are found 
after the controlled actuator has reached the target which is 
useful in scenarios where targets are not known a priori. Since 
both methods are suitable for cursor movement-based tasks, a 
combination of both methods might lead to improved 
performance. In the event where there are multiple possible 
targets, a target determining algorithm can be implemented 
using the distance from targets to initial brain control decoded 
kinematics as the deciding condition. In addition, online 
closed-loop testing of the AUKF will have to be done to 
reaffirm its effectiveness in actual BMI use. 
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