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Abstract— Ear-worn devices are rapidly gaining popularity
as they provide the means for measuring vital signals in an
unobtrusive, 24/7 wearable and discrete fashion. Naturally,
these devices are prone to motion artefacts when used in out-
of-lab environments, various movements and activities cause
relative movement between user’s skin and the electrodes.
Historically, these artefacts are seen as nuisance resulting in
discarding the segments of signal wherever such artefacts
are present. In this work, we make use of such artefacts to
classify different daily activities that include sitting, speaking
aloud, chewing and walking. To this end, multiple classification
techniques are employed to identify these activities using 8
features calculated from the electrode and microphone signal
embedded in a generic multimodal in-ear sensor. The results
show an overall training accuracy of 93% and 90% and a
testing accuracy of 85% and 80% when using a KNN and
a 2-layer neural network respectively, thus providing a much
needed, simple and reliable framework for real-life human
activity classification.

I. INTRODUCTION
Wearable sensors are revolutionizing the way we acquire,

analyse and interpret physiological data. These sensors have
penetrated all aspects of life, from smart watches that mon-
itor heart rate, oxygen saturation, activity level and water
intake, to smart home assistants which can detect emotions
from voice. Recent advances in this area have investigated
ear-worn devices which are referred to as Hearables [1]
and [2]. Benefiting from the privileged position of the head
on a human body, Hearables have proven their capability
in monitoring both physiological (electroencephalograph,
electrocardiogram, heart rate, temperature, respiration), [3],
[4], [5], [6], [7] and non-physiological (speech, user au-
thentication) signals [8]. The ultimate aim of Hearables in
both e-Health and recreational applications is to acquire
useful data from the user in a 24/7 and unobtrusive fashion.
The envisaged continuous operation will make it possible
to provide insights into for example, health, activity during
the day, quality of sleep at night and the overall well-
being. However, continuous real-life monitoring out of the
lab comes with the burden of the inevitable motion artefacts
such as those due to speaking, chewing and walking. These
artefacts heavily corrupt the signal of interest and more often
than not, the epochs containing these artefacts are discarded
leading to a loss and discontinuities in data.
To this end, we set out to make sense from the Ear-EEG
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artefacts and propose a novel method for human activity
classification from motion artefacts induced through different
routine daily activities. This is highly beneficial, not only
from the viewpoint of ”no data is bad data”, but also
given that human activity recognition has gained plenty of
interest in e.g care for the elderly. Indeed, several systems
have been designed with the aim of alleviating physical,
emotional and economic burden of a caregiver or family
member caring for an elderly with dementia [9], [10] with
152 million people expected to be affected by dementia
by 2050 [11]. Lentzas and Vrakas in [12] reviewed the
sensors, systems and methods used for activity recognition
for the elderly. These include smart phones, wearable sensors
(accelerometer, gyroscope, GPS, photoplethysmogram, tem-
perature) and ambient sensors (pressure, humidity, infrared,
magnetic switches, electric power usage). Such sensors are
used either as a stand-alone or in combination and mostly
achieve accurate results. However, with a view of adoption
by a broader community including the elderly, most systems
in the literature have one or more of the following drawbacks:

• Requirement for multiple wearable and non-wearable
sensors and are built around an idea to be integrated
into smart homes which makes them expensive;

• Assumption of a certain level of technological literacy
for their operation – often prohibitive with the elderly;

• Most do not identify the user that performs an action.
On the other hand, Hearables represent a stand-alone device
that is equipped with a multitude of physiological sensing
functionality; such a solution can even identify users using
their biometric data [8].
This pilot study takes the Hearables concept further and
establishes a framework for making sense from artefacts by
using them as a platform to infer behavioural queues. Human
activity classification typically employs machine learning
(ML) tools in standard settings; in [13], [14], [15], [16],
the authors used ML tools for human activity classification
and attained accuracies as high as 95%. In this study we
conclusively demonstrate the possibility to classify the most
frequent daily activities (sitting, speaking, chewing and walk-
ing) with a mean accuracy of 90%.

II. METHODS

A. Experimental setup and protocol

The Ear-EEG sensor used in this study represents a modi-
fied version of our original multi-modal generic EEG sensor
used in [2], [17], whereby an electret condenser microphone
(ECM) (model: CMC-4015-40L100) was embedded onto a
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Fig. 1. Concept of a generic Ear-EEG multimodal sensor with a visible
electrode and microphone. (a) Ear-EEG electrodes setup. (b) In-ear electro-
mechanical sensor in the form of an electret microphone beneath a flexible
electrode.

generic visco-elastic earplug, as shown in Fig. 1(b).
The Ear-EEG sensor has an electrode placed on the earpiece,
and a conductive gel was applied before insertion into the
ear. A reference gold-cup electrode was secured on the pinna
of the ear, as shown in Fig. 1(a), and a ground gold-cup
electrode was secured on the earlobe. The microphone signal
and the Ear-EEG signals were simultaneously recorded using
the g.tech g.USBamp amplifier with a 24-bit resolution and
at a sampling rate of 1200 S/s – in accordance with previous
settings in our studies [18].
The aim of our experiment was to investigate, study and
classify the artefacts induced by different daily activities,
namely, sitting, speaking, chewing and walking. For this pilot
study, a 29-year old female subject was recorded over 6
different trials on different days. This setup was considered
statistically sound according to [19]. During each trial, the
subject was asked to insert a gelled in-ear sensor with the
microphone embedded in it. The earlobe and helix were
then abraded by an abrasive electrode gel and subsequently
standard gold-cup electrodes were fixed to the respective
positions by the means of medical tape. During the protocol,
the subject sat in a home-setup on a comfortable chair facing
a computer screen and was video recorded for time-stamping
purposes. The subject was first asked to sit in a natural
posture for 2 minutes; following that a text was displayed
on the computer screen and a sound of a click was played
to signal the subject to start reading out loud the displayed
text for 2 minutes. This was then followed by a 30 second
break where the subject sat without motion in a natural
posture. Next, the subject was handed a chewing gum and
chewed for 2 minutes, after which a 30 second break was
re-initiated. Finally, the subject stood and walked on the spot
for 2 minutes and rested for 30 seconds. The daily activities
protocol (sitting, speaking, chewing, walking) was repeated
twice for each trial. The recordings were performed under
the IC ethics committee approval JRCO 20IC6414, and the
subject gave full informed consent.

B. Data pre-processing and preparation

The recorded data from the 6 different trials were first
time-stamped based on the protocol and the video record-

Fig. 2. Sample segments of pre-processed data from the electrode (top)
and the microphone signals (bottom).

TABLE I
ACTIVITIES, CLASSES AND NUMBER OF OBSERVATIONS PER CLASS.

Classes

0: Sitting
1: Speaking
2: Chewing
3: Walking

No. of training observations 135 observations per class
No. of testing observations 58 observations per class

ing acquired. Each activity was then appropriately labelled
(sitting/ speaking/ chewing/ walking). The data were then
pre-processed through the following steps:

• Mean removal and filtering through a 0.5-45Hz 8th
order Butterworth filter;

• Normalization by dividing by the maximum value of
the signal;

• Extraction of different activities from each trial based
on the protocol and video time-stamping;

• Concatenation of same activities from different trials;
• Segmentation of the signals into 3-second segments and

removal of segments that contain electrical noise;
• Division of data into 70% training data to determine

the best set of features and train different classification
models, and 30% testing data unseen by the model.

This resulted in a balanced data set summarized in Table I
(772 observations in total, each observation was 3 seconds
long) divided into 70% for training and 30% testing that
was used. Figure 2 shows a labelled sample segment of pre-
processed data from the electrical and mechanical recording
modalities.

C. Feature selection and extraction

To extract the most important features corresponding to
each class, the Control System Analysis and Design MAT-
LAB Toolbox [20] was employed to calculate the com-
monly used time and frequency domain features, shown in
Table II. The concatenated activity-specific observations of
all trials were divided into 3-second epochs, and the time
and frequency-domain features were calculated for both the
electrode and microphone signal.
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TABLE II
THE FEATURES CONSIDERED [20].

Type Metric

Basic statistics Mean
Standard deviation
RMS
Shape factor

Higher order statistics Kurtosis
Skewness

Impulsive metrics Peak value
Impulse factor
Crest factor
Clearance factor

Signal processing
metrics

Signal-to-Noise ratio (SNR)
Total Harmonic Distortion (THD)
Signal to Noise & Distortion ratio (SINAD)

Spectral metrics Peak amplitude
Peak frequency
Band Power

Fig. 3. Calculated features sorted by importance based on one-way ANOVA
test.

In order to select the most significant features that allow
for maximum separation between different classes and most
affect the target output, the one-way analysis of variance
(ANOVA) test was used. The choice of this method was
suggested by the type of data, whereby the input vari-
ables (features) are numerical and the output/target variables
(classes) are categorical [21]. The one-way ANOVA results
were then rank ordered based on the significance of features.
Only the features with significance of more than 50% from
each recording modality were selected. It is important to
note that the feature selection process was performed on the
training data only. The selected features, shown in Fig. 3,
were then used to train a comprehensive set of classifiers,
and also for the test data.

D. Classifiers training & selection

Different classification model types, listed in Table III,
were evaluated using the Machine Learning and Deep Learn-
ing MATLAB Toolbox [22]. Five-fold cross-validation was
used on the randomized training data, and the classifier with
the highest model accuracy was chosen. To evaluate the
performance on unseen data, the overall model and class-
specific accuracies were used as metrics to evaluate the
performance of the classifier. In addition, the sensitivity (true
positive rate (TPR)), false negative rate (FNR), precision
(positive predictive rate (PPV)), and the false discovery rate

TABLE III
THE DIFFERENT TYPES OF CLASSIFIERS TRAINED

Model Type Classifier

Decision Trees Fine Tree (Max no. of splits: 100)
Medium Tree (Max no. of splits: 20)
Coarse Tree (Max no. of splits: 4)

Discriminant Analysis Linear Discriminant
Quadratic Discriminant

Naive Bayes Classifiers Gaussian Naive Bayes
Kernel Naive Bayes

Support Vector Machines
(SVM)

Linear SVM
Quadratic SVM
Cubic SVM
Fine SVM
Medium SVM
Coarse SVM

Nearest Neighbors Classifiers Fine KNN
Medium KNN
Coarse KNN
Cosine KNN
Cubic KNN
Weighted KNN

Ensemble Classifiers Boosted trees
Bagged trees
Subspace Discriminant
Subspace KNN
RUSBoosted Trees

(FDV) were calculated as:

TPR =
TP

TP + FN
× 100

FNR =
FN

FN + TP
× 100

PPV =
TP

TP + FP
× 100

FDR =
FP

FP + TP
× 100

E. Neural network classifiers

A 2-layer feed-forward neural network, shown in Fig. 4,
was used to classify the features from Table II into one of
the targets (sitting, speaking, chewing, walking). One of the
main challenges was deciding on the number of hidden layers
and the number of neurons in each layer. As there exists
no analytical solution or rule for their determination, these
hyper-parameters were chosen based on systematic exper-
imentation depending on the application at hand. Another
challenge that naturally arises when training a neural network
is the varying accuracy when training on the same data. This
is mainly due to the random shuffling of data and the random
initializations of the weights in the network. While this gives
neural networks the flexibility to better learn, it also poses a
problem of instability between subsequent training trials.
To address these issues, exhaustive search on the number of
neurons in the two layers was performed to determine the
optimal number of neurons in a neural network architecture.
Each combination was repeated over 100 trials (using same
seeds in order to compare different models) to address the
variable accuracy results in subsequent training sessions. The
mean overall accuracy of each combination was calculated
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Fig. 4. Architecture of the neural network used

Fig. 5. Model accuracy of the different trained classifier models.

and the data was tested and reported for the models which
yielded accuracy higher than 75%.

III. RESULTS AND DISCUSSION

Given the proof-of-concept nature of this study, and the
fact that EEG vastly varies between different trials, even
from the same subject, our hypothesis was that the artefacts
will be less varying and therefore usable for identification
and classification. To this end, we evaluated the performance
of a comprehensive set of standard and advanced classifiers
listed in Table III. Fig. 5 illustrates the performance of the
considered classifiers, with the KNN and neural network
classifiers achieving best results and evaluated below.

A. K-nearest neighbour (KNN) classifier

The KNN classifier with k=10 had the highest overall ac-
curacy. The distance metric used was the Euclidean distance,
with the squared inverse as a distance weighting function.
The overall trained model accuracy was high around 93.7%.
This model was evaluated on the testing data and the overall
testing accuracy was around 85%, while the overall sensitiv-
ity was 85% and the overall precision 87.75%. This means
that on average, when the result is positive, our model does
detect it as positive but also in a precise way, that is, when it
predicts a correct class, that class is actually correct around
88% of the time. However, sensitivity drastically drops to
62.1% in the case of walking activity, as shown in Fig. 6,
which in turn affects the precision of predicting the chewing
activity, given that on several instances it was misclassified
as walking.

B. Neural network classifier

Fig. 7 presents the trained model accuracy as a function
of the number of neurons in the two layers. Note that, as

Fig. 6. Confusion matrix for the unseen data in the four-category prediction
task with the activities 0: Sitting, 1: Speaking, 2: Chewing, and 3: Walking.

Fig. 7. Model accuracy of a trained neural network as a function of the
number of neurons in each layer.

commonly suggested in the literature, when determining the
number of neurons in subsequent hidden layers, their number
in the second layer was kept equal to or smaller than that
of the first layer. From the steep observed slope in Fig. 7,
we deduce that a network with a small number of neurons
was more sensitive to their number in the second layer.
In fact, an increase from 5 to 10 neurons in the second
layer enhanced model accuracy from around 81.5% to 85.5%
(with the number of neurons in the first layer kept at 10),
an improvement of 4%. On the other hand, doubling the
number of neurons from 5 to 10 in the first layer resulted in
a slight improvement from 81% to 81.5% (with the number
of neurons in the second layer set to 5).

Table IV shows the mean test accuracy for different
combinations of neuron population in the layers. Observe
that performance improvement was only marginal for 25+
neurons in each layer. Therefore, and given the computational
benefits, a 2-layer feed-forward neural network with 29
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TABLE IV
NEURAL NETWORK MODEL ACCURACY FOR DIFFERENT COMBINATIONS

OF THE NUMBERS OF NEURONS IN NN LAYERS.

No. of neurons in
1st layer

No. of neurons in
2nd layer

Mean model
accuracy %

Mean test
accuracy %

4 4 77.79 61.40
12 9 85.79 71.21
18 17 89.96 74.19
29 25 89.05 78.14
40 36 89.91 79.64
61 43 90.82 80.40
70 35 90.55 80.21

neurons in the first layer and 25 in the second layer was
deemed adequate.

IV. CONCLUSIONS

We have proposed a radically new approach for human
activity classification based on artefacts from the Ear-EEG
modality from Hearables. The recording and analysis have
conclusively indicated that artefact-corrupt epochs of EEG,
which are usually discarded, represent a rich behavioural
information stream that provides a new tool for real-life
continuous behavioural monitoring. The analysis over a
comprehensive sample of classifiers, has shown that a KNN
classifier attained an overall classification accuracy of 85%,
with a an overall precision of 87.5%. For rigour, the model
was trained on data acquired on different days and the
performance was tested on unseen data. This has also conclu-
sively demonstrated our hypothesis that the artefacts exhibit
a more regular behaviour than the EEG, when recorded over
several days and multiple trials. It is our hope that this
proof-of concept will lay the foundation for larger studies
whereby EEG paradigms may be designed to be more ”user-
specific” and the recording artefacts more generalizable. Our
ongoing work examines the concept of transfer learning in
this context, thus eliminating the need to retrain the model.
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