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Abstract—
Estimation of human attentional states using an electroen-
cephalogram (EEG) has been demonstrated to help prevent
human errors associated with the degradation. Since the use
of the lambda response –one of eye-fixation-related potentials
time-locked to the saccade offset– enables such estimation
without external triggers, the measurements are compatible for
an application in a real-world environment. With aiming to
apply the lambda response as an index of human errors during
the visual inspection, the current research elucidated whether
the mean amplitude of the lambda response was a predictor
of the number of inspection errors. EEGs were measured from
50 participants while inspecting the differences between two
images of the circuit board. Twenty percent of the total number
of image pairs included differences. The lambda response was
obtained relative to a saccade offset starting a fixation of the
inspection image. Participants conducted four sessions over two
days (625 trials/ session, 2 sessions/ day). A Poisson regression
of the number of inspection errors using a generalized linear
mixed model showed that a coefficient of the mean amplitude
of the lambda response was significant (β̂ = 0.24, p < 0.01),
suggesting that the response has a role in the prediction of the
number of human error occurrences in the visual inspection.

I. INTRODUCTION

Neurophysiological studies have researched how human
mental states such as a mental workload or sustained atten-
tion are correlated with modulation of electroencephalogram
(EEG) [1], [2]. Online measurements of such EEG correlates
have been known to help prevent human errors induced by
a high mental workload or degraded attention before it hap-
pens in an ecologically-valid environment. It, for example,
is demonstrated that EEG measurements enable to predict
occurrences of misperception of auditory alarms due to an
inattention state during piloting an aircraft [3].

For such EEG measurements in the real-world environ-
ment, eye-fixation-related potentials (EFRPs) have attracted
attention [4]. EFRPs are obtained relative to the offset of
saccadic movements (i.e., a time point of staring a fixation of
an object). The applications of EFRPs would be beneficial for
measurements of mental states in a real-world environment
because, to extract EFRPs, external triggers associated with
events are not necessary. To date, studies successfully showed
the effectiveness of EFRPs as a means of investigating a
human cognitive process during free viewing [5]. As a related
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component to mental state estimation, a positive potential
observed at around 80 ms relative to saccade offset in
an occipital region –reflecting an afferent inflow of visual
information at fixation– is called a lambda response [6], [7].
The amplitude is known to be modulated by an amount of
attention to visual objects [8], and thus, can be applied to
monitor a mental workload in a real-world environment [9].

The current research aims to extend research on the EFRP-
based estimation of a human mental state to the visual
inspection task by investigating whether the number of
human error occurrences during the task can be predicted
from the measurements of the lambda responses. A contin-
uous inspection of the details of the products over a long
time requires inspectors to keep sustained attention, and a
decrease in the attention is one of the causes of inspection
errors such as judgments of defective products as normal
ones. To date, whether EFRPs have a role as a predictor
of human error occurrences during the visual inspection is,
however, less investigated. To this end, we measured EEGs
during a visual inspection task over two days (two sessions/
day, four sessions in total). The number of inspection errors
in each session was regressed based on a generalized linear
mixed model (GLMM) using the mean amplitudes of the
lambda responses and a log power in the alpha frequency
band at occipital regions –the alpha oscillations are related
to a response miss to the target stimuli in a sustained
attention task [10]. The current research set to answer the
question: Whether a mean amplitude of the lambda response
is a significant predictor of the number of inspection errors
during a visual inspection?

II. METHODS

A. Participants

The data were collected from 50 participants (25 males,
age range: 20 – 39). All participants had normal or corrected-
to-normal vision and reported no history of neurological
disorders. The current research was approved by the Ethical
Committee for Human and Animal Research of the National
Institute of Information and Communications Technology.
All participants provided written informed consent before
participating in the experiment. Data was collected under
the ethical standards in the Declaration of Helsinki.

B. Data Collection

EEG data were acquired from FCz, Pz, O1, and O2
positions according to the International 10–20 system using
dry electrodes (Unique Medical Co., Ltd., Tokyo, Japan) with
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1. A red rectangular surrounds 
an image on the left panel

2. The rectangular moves to
surround a corresponding image

on the right panel

3. Click a mouse button 
when detecting a difference

4. A next trial starts

Fig. 1: A schematic figure of an experimental procedure.

a 500 Hz sampling rate. The ground and the reference elec-
trodes were placed at the left and right mastoid, respectively.
Electrooculogram (EOG) was monitored above and the side
of the lateral canthus of the left eyes, respectively. A portable
EEG device (PolymateMini AP108; Miyuki Giken Co., Ltd.,
Tokyo, Japan) was used for measurements.

Participants performed a visual inspection task to detect
a difference between two images of the circuit boards. A
procedure of a trial is summarized in Fig. 1. Images of
a circuit board were arranged on the left and right panels
in the display. First, a red rectangular frame surrounded an
upper left image on the left panel for 1,200 ms. Participants
memorized the appearance of the image while the rectangular
were surrounding the image. Second, the rectangular moved
to surround the image in the corresponding location on the
right panel for 1,200 ms. Participants moved their gazes to
the image and judge whether the image was the same as
the one in the left panel. Participants clicked a mouse when
detecting a difference between them. They were forbidden
to (1) move their gazes before the red rectangular started
to move to the right panel and (2) to gaze back to the
image on the left panel once the red rectangular moved
to the image on the right panel. The same procedure was
repeated for all images on the display in the order from top to
bottom and from left to right. After all images in the display
were inspected, the next images were presented. The number
of trials in a session was 625 trials. The order of images
was randomized per participant. Participants performed two
sessions in a day over two days (2,500 trials in total). The
data collection in a single day lasted approximately 1.5 hours
including preparation. A short break was inserted between
the sessions.

Two types of differences were prepared: an upside-down
difference, where the top and bottom of the image are
upsidedown, and an edge difference, where both or either
paintings of the edge of the images were missing (Fig. 2).
Twenty percent of the total number of image pairs were
included as an upside-down difference or an edge difference
(i.e., 250 trials per difference type in total).

The same image
An image with

an upside-down difference
An image with

an edge difference
An example of an image

on the left panel

Edge

Fig. 2: Examples of different images in the task.

C. EEG data analysis

The preprocessing of raw EEG data was performed using
MATLAB (The MathWorks, Inc., U.S.A) and the FieldTrip
Toolbox [11] per session. Due to the mechanical troubles,
six participants’ data on day 1 and five participants’ data
on day 2 were not recorded. In the two participant data,
only the second session on day 1 and day 2 were recorded,
respectively. To calculate the mean amplitudes of the lambda
response, time points starting to fixate the inspection images
were manually determined by visual detection of saccade
offset points from the horizontal EOG data. The trials that
the saccade offset point was not visually determined were
removed from the further analysis. The trials that participants
gazed back to the image on the left panel immediately
after fixating the image on the right panel (gaze-back trials)
were also removed since there was a possibility that the
lambda response was contaminated with the ocular artifact
observed before a saccadic movement. The judgment of the
gaze-back trials was based on whether three consecutive
saccadic movements exist (i.e., gaze at the image on the
right panel, gaze back at the image on the left panel, and
gaze at the image on the right panel again). Besides, trials
that participants’ responses were not recorded correctly due
to mechanical troubles also were removed.

The EEG and EOG data were epoched in a range [−5,000,
5,000 ms] relative to the saccade offset point. The epoched
data were band-pass filtered from 0.3 Hz to 40 Hz (−6dB
cutoff) using a 3020th zero-phase Kaiser-windowed sinc
finite impulse response filter. To correct eye blinks, the
concatenated EEG and EOG data across trials were decom-
posed into independent components. The component of eye
blinks was determined based on visual inspection of the
waveforms of components. The trials were further epoched
in a range [−100, 350 ms]. Since the prestimulus region
is contaminated with ocular artifacts related to saccadic
movements [4], the trials were baseline-corrected using a
mean value of an entire epoch. Trials including a data point
surpassing ±50 µv in O1 and O2 electrodes were removed
from the further analysis. The mean percent of rejected trials
among the existing trials was 0.11% (SD = 0.26) across
participants.

The mean amplitudes of the lambda response were cal-
culated in a 40-ms time window centered on a peak of the
response, which is determined by taking a peak observed
in a ±30-ms time window centered on the peak latency
of the lambda response in grand-average EFRPs. The mean
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amplitudes were obtained per session in each participant’s
EFRPs. To use the same number of trials across sessions,
the minimum number of trials for all sessions was used for
averaging per participant data. The trials used for averaging
were randomly chosen per session. Five participants were
removed from the further analysis since peaks of the lambda
response were not observed in more than one session. To
calculate a log power in the alpha frequency range, fast
Fourier transformation was applied to a Hanning-windowed
entire epoch, which was padded with trailing zeros to the
next power of 2. A log of the power was averaged from
8 to 12 Hz. To improve the signal-to-noise ratio, the mean
amplitudes of the lambda response and the log power in the
alpha frequency range were calculated using data averaged
between O1 and O2 electrodes.

D. Statistical analysis

To determine whether the mean amplitudes of the lambda
response significantly explain the number of inspection er-
rors, GLMM was constructed using the log link function
and a Poisson distribution. We used a lme4 package [12].
A response variable was a number of the inspection errors
(Nerrors): judgments of the same images as different ones or
different images as the same ones. The model included the
mean amplitudes of the lambda response (lambda.amp) and
a log power in the alpha frequency band (alpha.log.pow) as
fixed effects. The days and sessions were also added in the
model as fixed effects since it is conceivable that the number
of inspection errors might be changed over time. They
were treated as ordered factors. The model fitted a random
intercept for each participant. To take into account that
the number of inspection errors is proportional to the total
number of the trials used for the analysis, the model specified
a log of the total number of trials (Ntrials) as an offset in
the model. The model expression in the Wilkinson–Rogers
notation was Nerrors ∼ lambda.amp+al pha.log.pow+day+
session+o f f set(logNtrials)+(1|participants).

We confirmed overdispersion of the model by a overdis-
pertion paramter ϕ̂ [13] using equation 1:

ϕ̂ =
∑i(yi − λ̂i)

2/λ̂i

residual degrees o f f reedom
(1)

where yi and λ̂i are the observed data and the estimated
expectation of the Poisson distribution of i-th sample, respec-
tively. The significance of the estimated coefficient β̂ of each
fixed effect was determined using the Wald test. To take the
overdispersion into account, the calculation of p value was
corrected by multiplying the standard errors of the estimated
coefficients β̂ by the square root of the overdispersion
parameter ϕ̂ . To avoid multicollinearity, variance inflation
factors (VIFs) were confirmed. The alpha level was 0.05.

III. RESULTS

Table I represents the mean percent of participants’ judge-
ment types per day and session. Fig. 3A depicts boxplots
of the percent of inspection errors per day and session,
indicating a trend to decrease over day and session. The

grand-average EFRPs (N = 45) are shown in Fig. 3B. The
peak latency in the mean grand-average EFRPs across O1
and O2 electrodes was 80 ms.
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Fig. 3: (A) The percent of inspection errors per session and
day. (B) The grand-average EFRPs with standard errors. The
solid vertical line represents a peak of the lambda response.

Fig. 4 depicts scatterplots between the percent of inspec-
tion errors and (A) the mean amplitudes of the lambda
response, and (B) the log power in the alpha frequency
band, respectively. In the GLMM analysis, the overdispersion
parameter of the model was 2.08. The VIF of every fixed
effect was < 1.5. The coefficients of Day (β̂ =−0.18) and
Session (β̂ = −0.23) reached the significance (p < 0.01) in
the Wald test. These significant negative coefficients suggest
that the inspection errors decrease over days and sessions.
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Fig. 4: (A) Scatterplots of percent of inspection errors
and mean amplitudes of the lambda response and (B) the
log power in the alpha frequency band. Participants were
distinguished by color.

Notably, the coefficient of the mean amplitudes of the
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TABLE I: The mean percent of participants’ judgements per day and session.

Day 1 Day 2

Session 1 Session 2 Session 1 Session 2

Actual image Same Different Same Different Same Different Same Different
Same 81.1(2.2) 0.7(1.0) 80.7(1.7) 0.4(0.7) 80.7(2.0) 0.4(0.8) 80.4(2.3) 0.4(0.7)

Different 1.7(1.6) 16.5(2.3) 1.4(1.3) 17.5(2.2) 1.5(3.1) 17.4(3.5) 1.1(1.4) 18.1(2.7)

NOTE. SD is given in parenthesis.

lambda response was significant (β̂ = 0.24, p < 0.01), in-
dicating that an increase in the inspection errors with an
increase in the mean amplitudes of the lambda response. The
coefficient of a log power in the alpha frequency band, on
the other hand, was not significant (β̂ = −0.07, p = 0.71).
Table II summarises the results of the GLMM analysis.

TABLE II: Summaries of GLMM analysis

Fixed effects Estimates S.E. z-value p-value

Lambda.amp 0.24 0.09 2.67 < 0.01∗∗
Alpha.log.pow −0.07 0.17 −0.38 0.71
Day −0.18 0.07 −2.67 < 0.01∗∗
Session −0.23 0.06 −3.83 < 0.01∗∗

NOTE. S.E. denotes standard error. ** indicates p < 0.01.

IV. DISCUSSION

A GLMM analysis revealed that the mean amplitude of the
lambda response plays a role in a predictor of the number
of inspection errors –an increase in the number of the errors
as an increase in the mean amplitude of the response.

Given that a decrease in the mean amplitude of the lambda
response correlates with degraded attention to a visual target
[8], we had expected that a negative relationship between
the mean amplitudes and the number of inspection errors:
The number of errors increased as a decrease in the mean
amplitudes because degraded attention to inspection images
can be considered as one of the factors to induce the errors.
Contrary to the prediction, the positive relationship between
the lambda responses and the number of errors might suggest
that excessive attention to inspection images rather induces
the errors. In the scenario, the session where the mean
amplitudes were relatively high indicates that participants
attempted to keep a high degree of attention to inspection im-
ages. However, in such a session, localized attention decrease
might have happened more frequently than a session where
the mean amplitudes were relatively low because it is not
easy to maintain a high degree of attention to the inspection
images throughout a session. To elucidate the validity of the
current explanation and the detailed relationship between the
lambda responses and inspection errors, further investigation
is necessary for the future.

V. CONCLUSIONS

The current research suggests measurements of the lambda
response during the visual inspection would be beneficial in
terms of estimating the number of human error occurrences.
For practical usage, future research will focus on whether
the use of the EEG features can be applied to a real visual
inspection at a production site.
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