
  

  

Abstract —In applications using electromyography (EMG), it 

is important to ensure high performance for all users (versatility 

among users) and to enable use without prior preparation 

(usability). Some of the current applications that use EMG 

normalize the signal through methods based on the measured 

maximum absolute value of EMG (maEMG), such as dynamic 

contraction (DC). However, usability is low when using DC 

because the reference value must be measured first every time 

the application is used. Further, the versatility among users is 

low because of the nonlinearity of EMG and the fact that 

maEMG varies among users. This study aimed to improve 

usability and versatility among users for continuous 

classification tasks using EMG. To this end, we developed a 

normalization method using sliding-window and z-score 

normalization techniques. The results reveal that the proposed 

method exhibits higher usability and versatility among users 

than DC. The proposed method does not require any calibration 

time, suggesting improved usability, while yielding the same 

classification accuracy as DC (57% for three target tasks) for a 

model trained using a subject’s own data. Further, for a model 

trained with other users’ data, the proposed method yields a 

classification accuracy of 53%, which is 18% higher than that of 

DC (35%), suggesting versatility among users. These results 

demonstrate that the proposed normalization method improves 

usability and versatility for users of practical applications that 

use EMG and perform continuous classification, such as 

prosthetic hands. 

I. INTRODUCTION 

Electromyography (EMG) is a bioelectrical signal that 
increases in amplitude when the subject exercises or contracts 
a muscle. EMG has been used by researchers to study and 
develop applications that expand or recover human ability [2]. 
There are two types of applications, namely, continuous 
motion classification and continuous kinematics/kinetics 
parameter estimation [1]. Continuous motion classification is 
used in prosthetic hands, where established motions are 
predicted using EMG. On the other hand, continuous 
kinematics/kinetics parameter estimation is used in assist suits 
and robot arms for estimating joint angles, angular velocities, 
or torques. However, EMG has disadvantages, such as 
nonlinearity, in control applications; further, the characteristic 
magnitude of EMG depends on factors such as sensor 
placement and fatigue. When commercializing applications, 
high performance as well as versatility and usability are 
required for different users. Further, there are two types of 
versatility, namely, that among individuals and that among 
users. Here, we consider only the usability and versatility 
among users, which are defined as follows.  
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Usability is defined as the ability to use the application 
immediately and without preparation steps such as calibration 
and wearing. Versatility among individuals is defined the 
model performance do not vary with variations in the 
magnitude of EMG depending on factors such as sensor 
placement and fatigue. To be versatile, the performance of the 
application should not vary with time. Further, versatility 
among users implies that high performance is achieved for any 
user, even if they do not use a model trained with their own 
data. This is because for commercialization, applications 
commonly employ a model trained with other people’s data.  

Several researchers have considered the problem of 
reduced usability and versatility caused by normalization 
methods. In machine learning, normalized data are typically 
used to improve performance and versatility. EMG 
normalization conventionally employs either maximal 
voluntary contraction (MVC) or dynamic contraction (DC). A 
common aspect of MVC and DC is the use of the maximum 
absolute value of EMG (maEMG) for normalization. MVC 
normalization uses EMG measured when subjects/users focus 
on muscles as much as possible. On the other hand, DC 
normalization uses EMG measured when subjects/users 
perform a task. Generally, when applying MVC or DC, the 
corresponding activity (contracting muscles or performing a 
task) is repeated a few times, and the maEMG is selected over 
the repetitions. MVC and DC have a disadvantage in that 
maEMG, which is used as a reference for normalization, varies 
among users because of factors such as sensor placement, 
fatigue rate, and subject characteristics. During the training of 
a machine learning model and measurement for MVC or DC 
before using an application, differences in maEMG decrease 
the application performance. Moreover, the fatigue rate 
increases with the duration for which the application is used; 
therefore, the application performance usually decreases with 
time. Therefore, we need a robust normalization or feature 
extraction method that overcomes EMG magnitude variations 
and the strong nonlinearity to enable high-performance 
applications. 

For an application that predicts continuous motions using 
EMG, the waveform is considered better than the magnitude 
of amplitude [2,3]. This implies that we can predict motions 
by extracting changes in EMG that occur during exercise and 
muscle contractions. Therefore, by sufficiently eliminating 
noise and normalizing the magnitude of the EMG before 
feature extraction, real-time applications can achieve usability 
and versatility among individuals and among users.  

In this paper, we propose a normalization method using 
sliding-window analysis (SWA) and z-scoring that does not 
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require a calibration and can normalize the magnitude of EMG 
in real time to improve usability and versatility. The proposed 
method is referred to as sliding-window normalization (SWN) 
and is detailed in Section II.B. 

Additionally, we predicted continuous elbow-joint 
motions (rest, flexion, and extension of three targets) on the 
right arm of different subjects to compare the usability and 
versatility among users of SWN and DC. The evaluation 
methods are detailed in Section II.F. In Section III, we describe 
the effect of window length on model performance by training 
a model with data from one subject and testing it with all 
subjects’ data on SWN and DC (section III.A). Finally, we 
compare SWN and DC in terms of the usability and versatility 
among users for the model showing the best performance on 
SWN and DC (Section III.B). 

II. METHODS  

A. Data acquisition 

The ethics board of Nagaoka University of Technology 
approved this study. The subjects were two right-handed men 
that were 22 and 23 years old. They performed a task including 
12 types of elbow-joint movements with four start and end 
points (Fig. 1(A)), moving from one point to another one of 
the remaining three points. Each trial consisted of pre-rest (2.0 
s), task (2.5 s), and post-rest (0.1 s). The subjects executed the 
task 30 times for each of the 12 elbow-joint movements, for a 
total of 360 elbow-joint movements. During data acquisition, 
the following four success conditions were defined: 

1) While not moving during the rest period, the elbow-
joint angular velocity is not over 2° /s. 

2) During the task period, the task ends between 0 and 2 
s. 

3) The elbow-joint angle is positioned at the starting point 
(± 2.0°) during the rest period and at the end point 
(± 6.0°) after the task finishes. 

4) The elbow and shoulder are within a circle of 3-cm 
radius centered on the initial position. 

The experimental setup is shown in Fig. 1(B). We used this 
configuration to measure the EMG and position data, at 
predetermined locations, with specialized equipment. The 
position data were measured at three locations, namely, the 
hand, elbow, and shoulder, using Optotrak (NDI Inc., 
sampling rate: 500 Hz). The EMG was measured at the 
biceps brachii (×4), brachialis (×1), brachioradialis (×1), 
anconeus (×1), triceps brachii (outside) (×2),  triceps 
brachii (long head) (×2), and extensor carpi radialis longus 
(×1), totaling 12 locations, by using Trigno Lab Avanti 
(Delsys, sampling rate: 2000 Hz). 

B. Sliding-window normalization 

To improve usability and versatility, we used SWA and 
z-scoring as they do not need a calibration and can 
normalize the EMG magnitude in real time. SWA is often 
used for signal processing analysis, time-variant parameter 
estimation, and so on. SWA is based on using signals as 
long as the window length is established. When acquiring a 
new sample, sliding-window slides include the newest 
sample and discard the oldest one. Furthermore, z-scoring is 
a normalization method for machine learning. This method 

makes the mean equal to zero and the standard deviation 
equal to one. The proposed normalization method, which 
combines these methods, is referred to as sliding-window 
normalization (SWN) and is expressed by (1). SWN makes 
the mean and standard deviation of the samples in the 
sliding window equal to zero and one, respectively. 

 

, 

(1) 

where t is the current time, L is the window length, n is the 
time number in the window length, 𝐸𝑀𝐺𝑖 is the ith EMG which 

is measured or processed, and mt and σ t are tth mean and 

standard deviation of EMG in the sliding-window. The 
window length is the most important parameter in SWN. 
Therefore, we investigated its effect on model performance.  

C. Normalization during training and testing 

In this study, when training a classification model using 
DC, we normalized the EMG in the training dataset by the 
maEMG in each training dataset. In addition, when evaluating 
the performance of the model, we normalized the EMG in the 
test datasets by the maEMG in each test dataset; the training 
dataset was also similarly normalized. For the feature 
extraction, we acquired the same data length as the window 
length. Subsequently, we calculated the features from the 
acquired EMG.  

In the case of SWN, when training and evaluating the 
model, maEMG was not used. The window length of the SWN 
and feature extraction were the same. SWN was applied before 
feature extraction. 

D. EMG processing 

For pre-processing, we applied a low-pass filter (3rd-

order Butterworth filter, 100 Hz), decimation (from 2000 to 

500 Hz) to match the sampling rate of position data, a high-

pass filter (3rd-order Butterworth filter, 30 Hz), and 

normalization (SWN or DC). As a feature for the input of ML, 

we calculated the mean absolute value (MAV), mean 

waveform length (MWL), mean zero crossing (MZC), and 

envelope slope (ES). ES is calculated using (2). For feature 

comparison, we normalized most features. 
 

. 

(2) 

(B) 

Figure 1. Experimental setup: (A) task, (B) state 

(A)  
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E. Position processing 

Position processing is applied to acquire targets (rest, 

flexion, and extension, which are elbow-joint motions) for 

machine learning. 

To acquire targets, we applied the zero-phase low-pass 

filter (2nd-order Butterworth, 20 Hz) in the filtfilt function in 

MATLAB, converted from position to joint angle, converted 

from joint angle to joint angular velocity using the differential 

method, and clustered for rest, flexion, and extension 

according to (3). 
 

, 

(3) 

where �̇�𝑒𝑙𝑏𝑜𝑤 is the elbow-joint angular velocity. 

F. Evaluation of usability and versatility  

We used different methods to evaluate the usability and 

versatility among users on the basis of the same performance 

metric, namely, accuracy, as expressed in (4). The accuracy is 

used for the easy comparison of multi-class classification 

results by one overall evaluation value. 

 

 
(4) 

Furthermore, we used stratified shuffle-split cross-validation 

to investigate the effect of maEMG on DC by acquiring the 

standard deviation of accuracy for each subject. In this study, 

we divided all data into ten datasets; then, we selected five 

datasets to train the model and repeated datasets selection ten 

times for each subject. We used logistic regression as a 

classification model for three real-time target classifications. 

The real-time meaning is the models predict the next sample 

target. 

The evaluation criteria of the usability and versatility 

among users are defined as follows:  

1) When evaluating usability, we used models trained with a 

subject’s own data and calculated the accuracy by using all of 

their own data. If the SWN accuracy for the cross-validation 

set was as high as or higher than that of DC, SWN was 

considered to have better usability than DC. This is because 

the usability is better if the preparation time is shorter. 

However, SWN does not require calibration, unlike DC.  

2) When evaluating the versatility among users, we used 

models trained with other subjects’ data and calculated the 

accuracy and standard deviation of accuracy by using a 

subject’s own data. If the SWN accuracy for the models 

trained with other subject’s data was higher and the mean of 

the standard deviation of accuracy of these models was lower 

than that of DC, SWN was considered to have better 

versatility among users than DC.  

III. RESULTS  

A. Effect of window length 

To investigate the effect of window length on the 
performance of SWN and DC, we varied the window length 
between 50 and 300 ms. Then, we used models that were 

trained using the MWL of subject 1 and cross-validated by 
calculating the accuracy for data of all other subjects. Fig. 2 
shows these results, from which it is evident that the SWN 
accuracy increases with the window length for each subject. 
Further, some SWN accuracies calculated for other subjects’ 
data (especially window length is 300 ms) are higher than 
those calculated for subject 1’s own data. The DC accuracies 
that are calculated for other subjects’ data are lower than those 
calculated for subject 1’s own data as well as the chance level 
(100% / 3 targets = 33%). These results indicate that a model 
trained by DC can only fit one individual, while a model 
trained by SWN shows versatility among subjects. 

 B. Comparison between usability and versatility  

To check the usability and versatility among users when 

using SWN and DC, we used the method described in Section 

Ⅱ.F, i.e., we compared the accuracy and standard deviation of 

Figure 2. Effect of window length on model performance 

(using a model trained by the MWL of subject 1). 

(A)  

(B) 

Figure 3. Comparison of SWN and DC in terms of (A) usability and 

(B) versatility among users. A model trained by a subject’s own 

MWL is used in (A), and accuracy is calculated using the subject’s 
own MWL; the error bar shows the standard deviation of accuracy 

over the cross-validation set. Models trained by other subjects’ 

MWL are used in (B), and accuracy is calculated using a subject’s 
own MWL; the error bar shows the mean of the standard deviation 

of accuracy over the models trained with other subject’s data. 
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accuracy. The window length was set to 300 ms for SWN and 

150 ms for DC, as mentioned in Section III.A (Fig. 2), to 

compare the best performances of the model. In DC, 

normalization is applied based on the maEMG in all data for 

each subject. 

To evaluate the usability of SWN and DC, we compared 

the accuracy and standard deviation of accuracy across the 

cross-validation set using ten models trained by a subject’s 

own data. Fig. 3(A) shows an example of a usability 

comparison using MWL. The MAV, MZC, and ES results 

were similar to those of MWL. Moreover, Fig. 3(A) indicates 

that SWN has higher usability than DC. There are two reasons 

for this: the first is that the mean accuracy over the cross-

validation set is almost the same for SWN and DC at 57%; the 

second is that the mean of the SWN standard deviation of 

accuracy over the cross-validation set is better at 4.5% than 

that for DC, which is 0.83%.  

Further, to evaluate the versatility among users of SWN 

and DC, we compared the accuracy and the mean of standard 

deviation of accuracy over the other subjects by using models 

trained by each of the other subjects’ data. Fig. 3(B) shows an 

example of a versatility comparison using MWL. The error 

bars indicate the mean of the standard deviation of accuracy 

over the models trained with other subjects’ data. The MAV, 

MZC, and ES results were similar to those of MWL. Fig. 3(B) 

indicates that SWN has higher versatility among users than 

DC. There are two reasons for this. The first is that the mean 

of SWN accuracy over the models trained with other subjects’ 

data is 53%, which is 18% higher than for DC. The second 

reason is that the mean of the standard deviation for SWN 

accuracy over the models trained with other subjects’ data is 

0.88%, which is 4.6% lower than for DC. 

Furthermore, we found that the mean SWN accuracy 

changes among models trained with data of different subjects. 

Fig. 4 shows an example of this result using subject 2’s MWL. 

There is a maximum difference of approximately 7% between 

subject 2’s MWL and the MWL of other subjects used to train 

the model. Fig. 4 indicates that the model performance 

changes with the quality of training data because the mean 

SWN accuracy obtained when using the model trained with 

subject 2’s data is lower than that obtained when using models 

trained with other subjects’ data. 

IV. DISCUSSION 

The results for the usability and versatility among users 

(Fig. 3) indicate that SWN has beneficial characteristics: it 

ensures high performance without training the model and 

without calibration. Therefore, the proposed method can 

improve the usability and versatility among users of practical 

applications that use EMG and perform continuous 

classification, such as prosthetic hands. 
In Fig. 2, the SWN accuracies increase with window length, 

and a sliding-window length of 300 ms is the best in this study. 
However, previous studies considered a window length 
between 100 and 200 ms for feature extraction. Therefore, in 
the case of SWN, the window length for normalization should 
be long (i.e., 300 ms) and the window length for feature 
extraction should be short (i.e., 100 and 150 ms); this may 
potentially improve accuracy. The best window length or 

window rate for each feature extraction in SWN must be 
investigated further.  

Fig. 4 indicates that the performance of the model changes 
with the quality of training data. This implies that a high-
performance model can be realized by training with high-
quality EMG data. Furthermore, high model performance may 
potentially be achieved by training a support vector machine, 
which can select the optimal data for classification, using 
mixed subjects’ data.  

V. CONCLUSIONS 

Herein, we proposed a normalization method using a 

sliding window and z-scoring for continuous motion 

classification in order to improve the usability and versatility 

among users of EMG applications. The experimental results 

showed that the proposed method has a higher usability and 

versatility among users than DC.  

However, the performance of the proposed method was not 

high. Therefore, it must be improved by eliminating noise and 

changing the window length or window rate for feature 

extraction. Additionally, we identified four other problems to 

address in future studies. First, we investigated only time-

domain features in this study; therefore, we need to 

investigate other time-domain, frequency-domain, and 

advanced features. Second, z-scoring is essentially linear 

normalization, but EMG has strong nonlinearity; thus, 

nonlinear normalization must be achieved. Third, we have not 

investigated the versatility among individuals. Therefore, the 

effect of EMG changes that depend on sensor placement and 

fatigue rate must be investigated. Finally, as some studies 

estimated continuous kinematic/kinetic parameters such as 

joint angle and joint angular velocity, we need a 

normalization method for regression tasks that does not use 

the maximum absolute EMG. 
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