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Abstract— Different information-theoretic measures are
available in the literature for the study of pairwise and higher-
order interactions in multivariate dynamical systems. While
these measures operate in the time domain, several physiological
and non-physiological systems exhibit a rich oscillatory content
that is typically analyzed in the frequency domain through
spectral and cross-spectral approaches. For Gaussian systems,
the relation between information and spectral measures has
been established considering coupling and causality measures,
but not for higher-order interactions. To fill this gap, in this
work we introduce an information-theoretic framework in the
frequency domain to quantify the information shared between
a target process and two sources, even multivariate, and to
highlight the presence of redundancy and synergy in the
analyzed dynamical system. Firstly, we simulate different linear
interacting processes by showing the capability of the proposed
framework to retrieve amounts of information shared by the
processes in specific frequency bands which are not detectable
by the related time-domain measures. Then, the framework is
applied on EEG time series representative of the brain activity
during a motor execution task in a group of healthy subjects.

I. INTRODUCTION

Over the last decade, information-theoretic measures have
been extensively used to characterize complex dynamic sys-
tems in very different areas such as neuroscience, financial
time series and physiology. The framework of information
dynamics provides a unifying set of measures which allow
to quantify the amount of information produced and stored in
a complex system, transferred from a ”source” to a ”target”
and modified as a consequence of the interaction between the
sources and the target [1]. Though being intrinsically model-
free, the measures of information dynamics can be often
computed through the identification of a Vector Autoregres-
sive (VAR) model by exploiting their formulation for Gaus-
sian variables [2]. Specifically, while the information shared
among variables can be used to evaluate their coupling,
measures of information modification allow to investigate
the nature of the interactions among multiple variables. In
particular, two sources are redundant if they provide the
same or overlapping information about the target, while they
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are synergistic if their combination provides information that
is not available from either of them considered alone [3].
Classical approaches to evaluate synergy and redundancy
refer to the decomposition of interaction information and
have been successfully used to study cardiovascular and
cardiorespiratory interactions [3], as well as for the analysis
electroencephalographic (EEG) recordings in a variety of
physiological states [4].

While interaction information measures have been intro-
duced in the time-domain, a thorough spectral formulation
leading to assess synergistic and redundant interactions be-
tween scalar and multivariate processes as a function of
frequency is still missing. In many different context, such
as the study of brain dynamics from EEG signals the
frequency domain analysis of pairwise coupling is usually
performed through spectral measures such as the coherence
and the block coherence [5] which, however, do not provide
information about higher-order interactions like redundancy
and synergy. To fill this gap, the present work introduces a
new framework for the spectral analysis of the information
shared among three blocks on interacting processes (i.e. two
sources and a target). The measures in the framework are
derived in a simple way from the cross-spectral matrix of a
multivariate process. Here, the measures are tested first in a
theoretical example, and then in real EEG signals recorded
during a motor execution task.

II. MEASURES OF LINEAR ASSOCIATION AND THEIR
SPECTRAL DEFINITION

Let us consider two-zero mean stationary multivariate
stochastic processes X and Y of dimension MX and MY ,
and define the random variables that sample the processes at
the time n as Xn = [X1,n · · ·XMX ,n]

T and Yn = [Y1,n · · ·YMY ,n]
T .

In the frequency domain, the multivariate processes can
be described considering the power spectral density (PSD)
of each constituent scalar process defined as the Fourier
Transform (FT) of the autocorrelation function of the pro-
cess (e.g., PX1(ω) = FT{rX1(k)},rX1(k) =E[X1,nX1,n−k]) and
the cross spectral density between two scalar processes
defined as the FT of their cross-correlation function (e.g.,
PX1X2(ω) = FT{rX1X2(k)},rX1X2(k) = E[X1,nX2,n−k]), where
ω ∈ [−π,π] is the normalized sampling frequency (ω =
2π

f
fs

with f ∈ [− fs
2 ,

fs
2 ], fs sampling frequency). The spec-

tral densities are collected in the individual PSD matrices
PX (ω),PY (ω) of dimensions MX ×MX and MY ×MY , and in
the joint PSD matrix of dimension (MX +MY )×(MX +MY ),
P[XY ](ω) , [PX (ω)PXY (ω);PY X (ω)PY (ω)], where the semi-
colon delimiter stands for rows separation. PXY (ω) is the
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(MX ×MY )-dimensional matrix that contains the cross PSD
between Xi and Yj as (i, j) element, and PY X (ω) = P∗XY (ω) (∗

stands for Hermitian transpose). A spectral measure of linear
association between X and Y can be defined as:

fX ;Y (ω), log
|PX (ω)||PY (ω)|
|P[XY ](ω)|

, (1)

where | · | stands for matrix determinant.The measure (1) has
an information-theoretic interpretation since, for Gaussian
processes, it constitutes the integral of the spectral repre-
sentation of the Mutual Information Rate (MIR), a well-
known information-theoretic measure of the total degree of
association between the two processes [6]:

MIRX ;Y =
−1
4π

∫
π

−π

log
|P[XY ](ω)|

|PX (ω)||PY (ω)|
dω. (2)

A similar decomposition was proposed by Geweke [7] who
introduced the time domain measure of linear dependence:

FX ;Y =
1

2π

∫
π

−π

fX ;Y (ω)dω, (3)

which obtains an information-theoretic interpretation con-
sidering (2), i.e. FX ;Y = 2MIRX ;Y .We note also that the
measure of linear association (1) is directly linked to the
so-called block coherence [6], a frequency domain measure
of coupling which extends to the multivariate case the very-
well known magnitude squared coherence:

C(b)
X ;Y , 1−

|P[XY ](ω)|
|PX (ω)||PY (ω)|

, (4)

By combining (1) and (3) it is easy to show that fX ;Y =

− log(1−C(b)
X ;Y ). Given this interpretation, and using the

natural logarithm, the quantity FX ;Y is measured in natural
units (nats), and the spectral quantity fX ;Y (ω) is measured
in nats/rad.

Now, let us consider a multivariate process Z = [XY ]T =
[X1X2Y ]T , where Y is assumed as ”target” and X1 and X2 are
assumed as ”sources”. Both the target and the sources can
be multivariate processes, so that we study the interactions
between ”blocks” of time series considered as realizations of
these processes. Let M, MY , M1, and M2 be the dimensions
of Z,Y,X1 and X2 (M = MY +M1 +M2). Then, to study the
interactions in the frequency domain, we consider the (M×
M)-dimensional spectral density matrix

PZ(ω) =

 PX1(ω) PX1X2(ω) PX1Y (ω)
PX2X1(ω) PX2(ω) PX2Y (ω)
PXY X1(ω) PY X2(ω) PY (ω)

≡ P[X1X2Y ](ω)

(5)
In (5), PX1(ω) is an (M1×M1)-dimensional matrix containing
the PSD of the scalar process X1i as i− th diagonal element
and the cross-PSD between X1i and X1 j as (i, j) off-diagonal
element, and PX1X2(ω) is an (M1×M2)-dimensional matrix
containing the cross-PSD between X1i and X2 j as (i, j)
element; the same notion follows intuitively for the matrices
PX2(ω), PY (ω), PX1Y (ω) and PX2Y (ω), of dimension M2×M2,
MY ×MY and M2 ×MY . Considering the overall spectral
matrix PZ(ω) and its constituent blocks, time and frequency

domain measures of linear association between X1 and Y ,
between X2 and Y , and between X = [X1X2] and Y , can be
defined as in (1) and (3):

FX1;Y =
1

2π

∫
π

−π

log
|PX1(ω)||PY (ω)|
|P[X1Y ](ω)|

dω, (6a)

FX2;Y =
1

2π

∫
π

−π

log
|PX2(ω)||PY (ω)|
|P[X2Y ](ω)|

dω, (6b)

FX1X2;Y =
1

2π

∫
π

−π

log
|P[X1X2](ω)||PY (ω)|
|P[X1X2Y ](ω)|

dω, (6c)

where the arguments of the integrals correspond respectively
to fX1;Y , fX2;Y and fX1X2;Y . Then, according to the principles
whereby interaction information is defined for random vari-
ables [8], we define the following information-theoretic and
spectral measures of source interaction:

IY ;X1;X2 , FX1;Y +FX2;Y −FX1X2;Y (7)

iY ;X1;X2(ω), fX1;Y (ω)+ fX2;Y (ω)− fX1X2;Y (ω). (8)

If the two sources X1 and X2 exhibit a stronger additive
degree of linear dependence with the target Y when they are
considered separately than when they are considered together
(FX1;Y +FX2;Y > FX1X2;Y ), the time-domain source interaction
measure is positive (IY ;X1;X2 > 0), denoting redundancy; if,
on the contrary, the linear association between X1 and X2
considered jointly and Y is stronger than the sum of the linear
association between X1 and Y and X2 and Y , (FX1;Y +FX2;Y <
FX1X2;Y ), the time-domain source interaction measure is nega-
tive (IY ;X1;X2 < 0), denoting synergy. The same properties are
satisfied by the frequency domain source interaction measure,
and hold for each specific frequency. Moreover, the time and
frequency domain interaction measures satisfy the property
of spectral integration: IY ;X1;X2 =

∫
π

−π
iY ;X1;X2(ω)dω .

III. THEORETICAL EXAMPLE

To illustrate the methodology implemented for the eval-
uation of frequency-domain multivariate interactions among
coupled systems, we consider a theoretical example of four
Gaussian systems whose associated processes are described
by the VAR model with the equations:

Z1,n = cZ2,n−1 +(1− c)Z3,n−2 +U1,n, (9a)

Z2,n = 2ρ2 cos(2π f2)Z2,n−1−ρ
2
2 Z2,n−2 +

1
2

Z4,n−2 +U2,n,

(9b)
Z3,n = 2ρ3 cos(2π f3)Z3,n−1−ρ

2
3 Z3,n−2 +U3,n, (9c)

Z4,n = 2ρ4 cos(2π f4)Z4,n−1−ρ
2
4 Z4,n−2 +U4,n, (9d)

where Un = [U1,n · · ·U4,n] is a vector of zero mean white
Gaussian noises with unit variance and uncorrelated with
each other (ΣU = I). The parameter design in (9) is chosen to
allow autonomous oscillations in the processes Zi, i = 2,3,4,
obtained placing complex-conjugate poles with modulus
ρ2 = 0.8 and ρ3 = ρ4 = 0.9 and normalized frequencies
f2/ fs = 0.1, f3/ fs = 0.05 and f4/ fs = 0.35 which, assuming
a sampling frequency fs = 100 Hz determine oscillations at
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10 Hz, 5 Hz and 35 Hz. Given (9), we assume X1 = Z2
and X2 = [Z3,Z4] as source processes, and Y = Z1 as target
process. Taking the Z-transform of (9) and exploiting the
relation between the frequency version of transfer matrix
(H(ω)) and the AR coefficients matrix, the 4× 4 spectral
density matrix can be obtained as PZ(ω) = H(ω)ΣUH∗(ω)
[9]. This leads to compute the exact values of all the time
and frequency domain information measures defined in the
Methods section for the theoretical process. We do this
varying the parameter c which controls the strength of the
connection between the sources X1,X2 and the target Y .

Fig. 1. Simulation scheme of the coupled linear stochastic processes Eq.
(9) (panel a) and exemplary computation of time-domain and frequency-
domain interaction measures (b,c,d,e and f). Frequency-domain measures
are plotted with color coded by the coupling parameter c. Oscillations are
introduced in the system at f2 = 10 Hz, f3 = 5 Hz and f4 = 35 Hz.

The results of information decomposition performed in the
time and frequency domains for the VAR process (9) are
shown in Figure 1 (panel b, panels c-f, respectively). When
the coupling parameter c is increased from 0 to 1, the cou-
pling between the first source X1 and the target Y increases,
and the time-domain measure FX1;Y (red line, panel b) also
increases as a direct effect; an opposite trend is obtained
for FX2;Y (blue line, panel b) which decreases when the
coupling c increases. Looking at the measure of source
interaction (IX1;X2;Y , black line, panel b), it is null when
c = 0, while it highlights negative interaction information
(denoting synergy) when c = 0.5, and becomes positive
(denoting redundancy) when c = 1. The decomposition of
the information measures in the frequency domain highlights
interaction mechanisms which are specific for the oscillations
simulated at 5 Hz, 10 Hz, and 35 Hz. Specifically, when c is
low there is a transmission of the slow oscillation from X2
to the target through the link Z3→Y , with a peak at 5 Hz in
fX2;Y and fX1X2;Y (blue line, panels c,e), with no interaction
information (iX1;X2;Y = 0, panel f). When c = 1, there is a
direct transmission of the oscillation at 10 Hz through the

link X1→ Y revealed by the peaks in fX1;Y and fX1X2;Y (red
line, panels c,d). There is also a less prominent peak at
35 Hz due to the indirect causal link of Z4 ∈ X2 with the
target, mediated by X1. In this condition, the interaction is
fully redundant as shown by the peak in iX1;X2;Y at 35 Hz.
When 0 < c < 1, the coexistence of redundancy and synergy
is evident looking at the spectral profile of the interaction
information (panel f); importantly, this is not observable with
the time-domain measure which highlights only a synergistic
effect (IX1;X2;Y < 0).

IV. APPLICATION TO EEG DATA

The analyzed dataset refers to EEG signals recorded from
64 electrodes and referenced to both mastoids, as per the
international 10-10 system with a sampling frequency fs =
160 Hz in 109 healthy subjects [10]. The conditions analyzed
include a motor execution task where subjects were asked to
close the right fist (RIGHT) and a resting state condition
(REST). The raw signals were firstly detrended and filtered
with a second-order Butterworth filter (band-pass, 5-35 Hz),
and then segmented to extract ∼ 22 trials for each condition
and subject with a duration of 4 s each. For our analysis,
we selected as sources X1 and X2 the multivariate vectors
[FC2,FC4,FC6] and [C2,C4,C6] and as a target Y the group
composed by [C1,C3,C5] (Figure 2 a). The data of each trial
was checked for a restricted form of weak sense stationarity
[9]. Then, for each subject, experimental condition and trial,
parametric estimates of the spectral information measures
were obtained as follows. A VAR model was identified on the
nine selected time series, estimating its parameter through the
least square method and setting the model order according
to Bayesian Information Criterion [9]. The estimated VAR
coefficients and covariance matrix of prediction errors were
used to estimate the PSD matrix for the three multivariate
processes collected in the process Z according to (5). Finally,
estimates of the frequency-domain functions measuring the
information shared between the target and the two sources
taken separately (Eqs. (6a)-(6b)) or jointly (Eq. 6c) and the
interaction information between target and sources (Eq.(8))
were obtained from the PSDs.

Fig. 2 depicts the grand-average over subjects and trials of
the frequency profiles of each interaction measure, reported
separately for the REST and RIGHT conditions (b-e), as
well as the distribution across subjects of the measures
integrated over the β frequency band (f). For each integrated
measure, the distributions obtained during REST and RIGHT
are compared with a two-sided Wilcoxon signed rank test
for paired data in order to assess the statistical significance
of the changes induced by the motor execution task (p-
value < 0.05 was considered as statistically significant for
each comparison). The trends of each frequency-domain
measure show a prominent peak around 10 Hz (α band)
and a reduction of the average value in the β band during
RIGHT compared to REST . The decrease of the interaction
within the β band was detected as statistically significant
considering the information shared between the target and
the source X1 (FX1;Y ) and between the target and the two
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Fig. 2. (a) Overview of the EEG electrode montage highlighting the
position of the source and target processes selected for the analysis. (b-
e) Average spectral profiles of all the information measures analyzed; (f)
violin plots depicting the distributions across subjects of the four different
measures integrated over the β frequency range 16.5-20 Hz (probability
densities estimated with the kernel density estimator; dots represent outliers).
Statistical analysis (Wilcoxon test): *, p < 0.05 REST vs. RIGHT ).

sources taken jointly (FX1,X2;Y ) (Fig. 2f). The interaction
information was positive over the whole frequency profile,
thus denoting the presence of redundant information in the
system; redundancy was generally reduced across frequency
during the execution of the motor task (Fig. 2e).

V. DISCUSSION

We introduced a framework for the spectral decomposition
of multivariate information measures of linear association
and net redundancy/synergy. The framework was designed
to assess the information shared between two sources and
one target process, and was tested in both simulated and real
EEG signals.

The simulation study was designed to show how redundant
and synergistic effects between oscillations with different
frequencies arise from the interplay of direct and indirect
coupling mechanisms, and can be better elicited looking at
the spectral profile of the various measures. We show that
redundancy may arise as a consequence of indirect interac-
tion effects such as the coupling between one source and the
target mediated by the other source (c = 1, red line in Fig.
1f), and that redundancy may coexist with synergy arising
from interactions that occur independently between each
source and the target at nearby frequencies (c = 0.5, green in
line Fig. 1f). Importantly, these frequency-specific interaction
mechanisms may be hidden in the standard time-domain
representation of information as a result of the integration
between positive and negative interaction information values
occurring at different frequencies (black line, Fig. 1b).

The spectral analysis of the information measures com-
puted for the scalp EEG of 109 subjects during a motor
execution task revealed that information is exchanged mainly
in two different frequency ranges: the α band associated
with the so-called mu-rhythms, displaying a clear peak of the
information shared, and the β band, displaying a plateau of
the spectral information profiles. The activity in both bands
can be related with the physiology of motor execution, for
which movement and preparation for movement are typically
accompanied by a decrease in mu and β rhythms, particularly
in the scalp areas controlateral to the movement [11]. Such
expected result was reflected in the decrease of the infor-
mation measures during the RIGHT condition. The analysis
focused on the β band showed a reduction of the interaction
measures moving from REST to RIGHT; the decrease was
statistically significant for the information shared jointly
between the the target Y and the source X1. This was not
the case for the information shared between the source X2
and the target, which are associated with ipsilateral and
controlateral motor cortex activities respectively. Due to the
known bilateral desynchronization in the β band associated
with right or left hand movement [11], it is reasonable to
assume that an overlapped activity between X2 and Y can
result in redundancy. These results are also in line with
a previous study analyzing the topology of brain networks
estimated through causal spectral measures, showing a strong
involvement of both ispilateral and controlateral hemispheres
associated with right hand motor imagery task [12].
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