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Abstract—  

Purpose: Fatigue is often associated with increased injury 

risk. Many studies have focused on fatigue in the lower extremity 

muscles brought on by running, yet few have examined the 

relationship between fatigue of the core musculature and 

associated changes in running gait. To investigate the 

relationship between trunk fatigue and running dynamics, this 

study had two goals: (1) to use machine learning to determine 

which gait parameters are most associated with trunk fatigue; 

and (2) to develop a machine learning algorithm that uses those 

parameters to classify individuals with trunk fatigue. We 

hypothesized that we could effectively differentiate between the 

non-fatigued and fatigued states using machine learning models 

derived from running gait parameters. 

Methods: Seventy-two individuals performed a trunk fatigue 

protocol. Lower extremity running biomechanics were collected 

pre- and post- the trunk fatigue protocol using an instrumented 

treadmill and 10-camera motion capture system.The fatiguing 

protocol involved executing a series of trunk fatiguing exercises 

until established fatigue criteria were reached. Gait variables 

extracted from the non-fatigued and fatigued states served as 

model inputs to aid in the development of the machine learning 

model that would distinguish between non-fatigued and fatigued 

running. 

Results: The machine learning protocol determined three 

variables – stance time, maximum propulsive GRF and 

maximum braking GRF - to be the best discriminators between 

non-fatigued and fatigued running.  The SVM with Bagging was 

the best performing model that discriminated between non-

fatigued and fatigued running with an accuracy of 82%, 

precision of 77%, recall of 90%, and area under the receiver 

operating curve of 0.91.  

Conclusion: The machine learning model was effective in 

classifying between non-fatigued and fatigued running using 

three gait parameters extracted from GRF waveforms. The 

ability to classify fatigue using these easy to measure GRF 

derived parameters enhances the ability for the model to be 

integrated into wearable technology and the clinical setting to 

aid in the detection of fatigue and potentially injury, as fatigue is 

often a precursor to injury. 

 
Clinical Relevance— This model has the potential to be 

implemented in a clinical setting to determine the onset of trunk 

fatigue through basic gait analysis, involving only the ground 

reaction forces. This model would be aimed toward injury 

prevention since fatigue is linked to increased risk of injury.  
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I. INTRODUCTION 

Muscle fatigue is a recurrent topic in relation to gait 

analysis, due to the impact is has on physical performance and 

the established link between fatigue and increased risk of 

injury. When discussing the effects of fatigue on gait, the 

common focus is on muscles in the lower extremity. 

However, more recent studies have shifted focus to examine 

the relationship between fatigue in the core musculature of the 

trunk and the resulting mechanical changes in the lower 

extremity. Olson (2009) examined this relationship by 

applying trunk extensor fatigue and analyzing changes in 

walking gait. The study showed that the applied fatigue had a 

significant effect on the muscle activation patterns but little to 

no effect on measured gait parameters [1]. This same line of 

thought, connecting trunk fatigue to changes in gait, has 

somehow not been well explored in running gait, which has 

more reliance on trunk motion compared to walking. 

However, other types of fatigue have been analyzed with 

running gait, showing significant changes in trunk flexion and 

anterior-posterior ground reaction force between normal and 

fatigued running [2-4].  

 

The next step is to examine the difference between normal 

and trunk induced fatigue running to observe any significant 

changes in running gait brought on by this type of fatigue. 

This observation can help determine if there are gait 

parameter changes that are indicative of trunk fatigue. 

Researchers are constantly struggling to find objective 

measures to define fatigue, given the wide range in types of 

fatigue and the complexity of its onset. Traditionally 

participants rate their own exertion on a scale, but those scales 

are subjective measures of perceived exertion. However, if we 

can associate perceived exertion with physical changes in gait 

parameters, we can generate a quantitative model that is 

indicative of fatigue. Thus, this premise provided the 

foundation for this study in which fatigue was modeled using 

parameters extracted from changes in running dynamics 

measured before and after a trunk fatiguing protocol.  

 

Previous studies have followed the same premise of 

relating changes in gait parameters to the perceived onset of 

fatigue during running and walking in the hopes of classifying 

fatigue [5-9]. Most of these studies [4-8] used inertial 
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measurement units (IMUs) to collect data wirelessly and 

measured gait parameters as participants fatigued over time. 

One study decided to focus on the muscles themselves when 

quantifying fatigue, so they used surface electromyography 

measurements as their raw data for machine learning [9]. 

These studies all benefitted from previous works that describe 

the changes in gait from lower extremity running fatigue. Our 

current study differs in that there are not well documented 

changes in gait that have been associated with trunk fatigue. 

 

Therefore, this study had two objectives: (1) to use 

machine learning techniques to narrow down which gait 

parameters are most representative of trunk fatigue in running 

gait; and (2) to develop and test a machine learning model that 

can classify participants as rested or fatigued using running 

gait parameters. We hypothesized that we could effectively 

differentiate between fatigued and non-fatigued states using 

machine learning models derived from running gait 

parameters.  

II. METHODS 

A. Experimental Protocol 

Seventy-two healthy controls; age: 25.5 ± 5.2 yrs; height:  

1.8 ± 0.1 m; mass: 73.2 ± 14.9 kg; running speed: 2.7 ± 0.5 

m/s performed a running protocol on an instrumented 

treadmill collecting at 1200 Hz (Bertec Corporation, 

Columbus, Ohio). A fifty-six retro-reflective marker set and a 

10-camera motion capture system (Motion analysis 

Corporation, Santa Rosa, CA) were used to collect marker 

trajectories during the running protocol at a frame rate of 

200Hz. Markers were placed following the same protocol as 

Noehren et al. (2013) [10]. Ground reaction force (GRF) data 

was simultaneously collected with the marker trajectory data 

during running.  

 

Each participant performed two trials: one pre- and on 

post- trunk fatigue protocol. First, each participant ran at a 

self-selected speed until they verbally reported a perceived 

score of 14 on the 20-point Borg scale. Next, the participants 

performed the trunk fatigue protocol where they completed 

20 mountain climbs while in a plank position followed by a 

core rotation exercise. The core rotation exercise required that 

the participants hold a 4.54 kg weight and then rotate their 

trunk to one side, flex their trunk, rotate to the other side, 

extend their trunk and then return to the middle. The exercises 

were repeated until the participants met two of the following 

three fatigue criteria which were 1) reaching 17 on the Borg 

scale; 2) display an inability to control their trunk during the 

rotation exercise; or 3) a 25% increase in the time to perform 

the 20 mountain climbers. Once the participants were 

fatigued, they immediately performed the post fatigue 

running protocol where they ran at the same pre-fatigue self-

selected speed for 2 minutes.  

B. Machine Learning Protocol  

A total of 334 pre- and post- fatigue gait related variables 

were obtained from the experimental running trials for the 72 

participants. The datasets were split into training and testing 

sets where 60% of the data was used for training and 40% for 

testing. The 60-40 split is often used for smaller datasets. The 

gait parameters were all standardized in the training and test 

sets before developing the classification algorithm. The 

standardization process involved adjusting each variable to 

have a mean of zero and standard deviation of one.  

 

Data reduction was conducted by performing a grid search 

using a Random Forest classifier and assessing the area under 

the receiver operating curve (ROC). The resulting feature 

importance ratings helped reduce the dataset to three gait 

parameters that were used to differentiate between the pre- 

and post- fatigued conditions. The accuracy, precision, recall, 

and ROC area under the curve were considered at each stage 

to determine if there was a significant loss in performance 

with the reduction in the number of variables. A K-Folds cross 

validation strategy was used on the training dataset (k = 5) to 

make sure the algorithm was not overfitting the training set. 

Overfitting was evaluated by comparing the evaluated 

accuracy of the training set to the average accuracy for the K-

Folds cross validation and measuring the standard deviation 

of K-Folds cross validation accuracy scores.    

 

The Random Forest, SVM with a bagging strategy, K 

Nearest Neighbors (KNN), and a boosted decision tree were 

used to develop the models. The Random Forest had the 

benefit of rating feature importance, the KNN algorithm is 

simple and commonly used, and the Boosted Decision Tree 

and Bagging SVM are both commonly used to handle some 

of the limitations associated with small datasets. Each 

algorithm was run through a grid search to determine the 

variables that produced the best area under the ROC curve. 

Following the grid search, these algorithms were checked for 

overfitting using a Leave-One-Out cross validation strategy, 

evaluated by comparing the accuracy on the training set and 

the average accuracy of the cross validation. The resulting 

best models were then evaluated on the test data. 

 

The metrics used for assessment included accuracy, 

precision, recall, F1 score, and area under the ROC curve 

(AUC). Accuracy represents how well the trained model 

performed on test data overall. The precision represents the 

proportion of true positive results over total positive results, 

where the positive result in this case is the fatigued case. The 

recall represents the proportion of predicted positive 

outcomes over the total number of actual positive outcomes. 

The F1 score is an aggregate of the precision and recall, giving 

a single result to compare the models. The area under the ROC 

curve shows how successful the model is at distinguishing 

between the classes, in this case normal and fatigued.  

III. RESULTS 

Three parameters – stance time, maximum propulsive 

GRF, and maximum braking GRF - were extracted from the 

running dataset and served as the input features to the machine 

learning models. The Leave-One-Out cross validation 

strategy showed that none of the optimized models were 

overfitting the training data, all having a difference in training 

accuracy and mean cross validation accuracy of ≤ 8% (Table 

1). 
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Table 1. The training data cross-validation results for each algorithm. Shows 

the accuracy for the algorithm to predict the training data and the mean 

accuracy from the Leave-One-Out cross validation. 

Algorithm Training 

Accuracy 

Leave-One-Out 

Mean Accuracy 

Boosted Decision 

Tree 84% 76% 

K-Nearest 

Neighbors 77% 73% 

Random Forest 76% 74% 

SVM with Bagging 76% 74% 

 

 The SVM with Bagging algorithm outperformed the three 

other models across the board as it reported the highest 

accuracy, precision, recall, F1 score, and area under the ROC 

curve (Table 2). It was able to correctly classify nearly 82% 

of the test data and had a recall of almost 90%, showing that 

it correctly predicted fatigue in 90% of the participants that 

went through the fatiguing protocol. The precision was lower, 

at about 77%, but this was still the highest recall among the 

models. The high area under the ROC curve of 0.91 represents 

the algorithm’s greater ability to distinguish between the two 

classes. The ROC curve for the top performing SVM model 

is shown in Figure 1. 

 
Table 2. Comparison of the performance of the machine learning  algorithms 

in classifying between the pre- and post- fatigue states. 

Algorithm Accuracy Precision Recall F1 AUC 

Boosted 

Decision 

Tree 
80.0% 75.8% 86.2% 80.6% 0.85 

K-Nearest 

Neighbors 78.3% 72.2% 89.7% 80.0% 0.88 

Random 

Forest 78.3% 75.0% 82.8% 78.7% 0.88 

SVM with 

Bagging 
81.7% 76.5% 89.7% 82.5% 0.91 

 

 
 

Figure 1. The ROC curve for the SVM Classifier with bagging , which 

showed the best result on the test data. 

 

IV. DISCUSSION 

The objectives of this study were to determine the running 

gait parameters that are most representative of trunk fatigue 

and to develop a machine learning model that can classify 

trunk fatigue. The results supported the hypothesis as stance 

time, maximum propulsive GRF and maximum braking GRF 

were determined to effectively differentiate between the 

fatigued and non-fatigued states with an accuracy of 82% and 

recall of 90%.  These three parameters were deemed to be 

highly representative of trunk fatigue despite not being direct 

measures of trunk motion. Their ability to classify trunk 

fatigue can be linked to their ability to measure changes in 

center of mass that are connected to trunk flexion.  The 

implementation of machine learning made it possible to 

identify the link between these GRF based measures and trunk 

fatigue that resulted in the development of a quantitative 

model of fatigue.  Overall, this model is a step forward in 

classifying this type of fatigue quantitatively and by analyzing 

the parameters involved it could provide a better 

understanding of the physiological effects of fatigue on 

running biomechanics. 

 

The changes in propulsive and braking GRF can be 

directly related to the change in center of mass associated with 

increased trunk range of motion, which has been routinely 

observed in previous fatigue studies [2-4]. The change in 

center of mass, caused by the change in the leaning of the 

trunk, leads to a shift in the angle of the net GRF, leading to a 

greater force in the anterior-posterior direction as the trunk 

flexion increases [11-13].  This change in running strategy has 

also been shown to have influence on the knee and ankle, 

helping to decrease loading at the knee without increasing the 

activity of the ankle plantarflexors [14,15]. Given that trunk 

flexion was not measured in this study, the propulsive and 

braking GRFs served as surrogate measures for trunk flexion. 

While future adaptations of the model could include trunk 

flexion as a model parameter, an advantage of the current 

model parameters is that they can be measured from GRF 

waveforms alone. Stance time and maximum propulsive and 

braking GRFs can all be easily measured using wearable 

pressure insoles, which eliminates the need for expensive 

motion capture equipment. Furthermore, embedding this 

model into wearable sensors enhances the model’s utility as a 

diagnostic tool as it can not only be used to detect fatigue but 

could potentially be used for injury detection and/or 

prevention as fatigue often precedes injury. 

 

Stance time was found to be indicative of fatigue. Given 

that individuals were running at the same self-selected speed 

both pre- and post- fatigue, it is evident that individuals were 

adopting an alternate running strategy during the fatigued 

state. Once fatigued, the participants spent significantly less 

time with their feet on the ground suggesting that individuals 

adapted to the fatigue by increasing their stride frequency. 

This gait adaptation adopted in response to trunk fatigue 

differed from other fatigued induced running gait adaptations. 

Previous studies that investigated changes in gait 

biomechanics due to fatigue after running for long distances 

or at high rates of speeds found that stance time either stays 
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the same or increases post fatigue [4, 16]. In this case, since 

the trunk muscles were fatigued and unable to help with the 

attenuation of loading effects, the participants may have 

adapted their running biomechanics by limiting their time on 

the ground, which has shown promise in decreasing impact 

loading [15]. These findings are significant because it 

indicates that different gait strategies are adopted in response 

to different types of fatigue and that our model possesses the 

sensitivity to detect trunk fatigue. 

 

A limitation of the study was not including a trunk flexion 

measure. Given that the objective of the study was to generate 

a quantitative model to detect trunk fatigue, it is likely that 

trunk flexion would be impacted and thus potentially serve as 

a strong classifier. However, the measures included in the 

study were sensitive to changes in trunk position and 

produced a strong, accurate model. Moreover, the fact that the 

resulting metrics were extracted from the GRF waveforms 

was advantageous because it meant that the model could be 

easily integrated into wearable technology to aid in the 

clinical and diagnostic capabilities of the model. 

V. CONCLUSION 

This study produced a machine learning model that can 

effectively delineate between exerted and normal running 

patterns after implementation of a trunk fatigue protocol. The 

model showed an accuracy of 82%, and a recall of 90%. The 

model accomplishes this using only three gait parameters that 

can all be derived from GRF data, including maximum 

propulsive GRF, maximum braking GRF, and stance time. 

The use of only GRF data makes this model well suited for 

clinical applications since it does not require data from a 

motion capture system for classification. The strength of the 

model shows that the model parameters are highly correlated 

with the presence of fatigue. The maximum propulsive and 

braking GRF parameters are linked with increased trunk 

flexion, which is a common result observed during fatigued 

running. In most cases increased trunk flexion can be a 

compensatory strategy to help alleviate forces on the knee and 

ankle through the shift in center of mass, but in this study, 

adaptive changes in response to the trunk fatiguing protocol 

were observed as an increase in stance time and the associated 

step rate. These findings highlight the effectiveness of this 

work in both its ability to classify fatigued running and the 

critical insight the model parameters provide regarding the 

changes that individuals adopt in response to trunk fatigue 

that will aid in the clinical implementation and utility of this 

model.   
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