
 

   

 

 

 

Abstract— This study aims to classify rest and upper limb 

movements execution and intention using electroencephalogram 

(EEG) signals by developing machine-learning (ML) algorithms. 

Five different MLs are implemented, including k-Nearest 

Neighbor (KNN), Linear Discriminant Analysis (LDA), Naïve 

Bayes (NB), Support Vector Machine (SVM), and Random 

Forest (RF). The EEG data from fifteen healthy subjects during 

motor execution (ME) and motor imagination (MI) are pre-

processed with Independent Component Analysis (ICA) to 

reduce eye-blinking associated artifacts. A sliding window 

technique varying from 1 s to 2 s is used to segment the signals. 

The majority voting (MV) strategy is employed during the post-

processing stage. The results show that the application of ICA 

increases the accuracy of MI up to 6%, which is improved 

further by 1-2% using the MV (p<0.05). However, the 

improvement in the accuracies is more significant in MI (>5%) 

than in ME (<1%), indicating a more significant influence of eye-

blinking artifacts in the EEG signals during MI than ME. 

Among the MLs, both RF and SVM consistently produced better 

accuracies in both ME and MI. Using RF, the 2 s window size 

produced the highest accuracies in both ME and MI than the 

smaller window sizes.  

 
Index Terms— Electroencephalogram, hand gestures, machine 

learning, post-processing, majority voting, independent 

component analysis 

I. INTRODUCTION 

Electroencephalogram (EEG) measures brain electrical 

activity. The ability to correlate human movements to brain 

signals using EEG has tremendous potential in the biomedical 

field. Classifying EEG signals helps understand how the brain 

controls the human body and is vital for neuroprosthesis [1]. 

Recognizing motion intention is important for limb 

rehabilitation and the improvement of prosthetic and 

exoskeleton devices’ performance [2]. 

Analyzing the EEG signals is challenging as they are noisy 

and can easily be contaminated by motion artifacts such as 

eye-blinking or head movement. Independent Component 

Analysis (ICA) is usually used to remove eye-blinking 

artifacts from the EEG signals. The ICA uses blind source 

separation (BSS) methods to separate the EEG signals into 

statistically independent sources. The independent 

components representing eye artifacts are then removed from 

the EEG signals [3]. In [4], the authors reported that the ICA-
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based classification could outperform the time/frequency-

based classification by 13%.  

Different MLs have been previously investigated to predict 

the subject’s motion intention. Bandara et al. [5] classified 

different states of arm movement, including rest position and 

grabbing a cup of water, using both artificial neural network 

(ANN) and support vector machine (SVM) algorithms. The 

authors reported an overall accuracy of 71.3-72.6% and 81.9-

82.1% for the ANN and SVM algorithms, respectively. Other 

studies have used Linear Discriminant Analysis (LDA) to 

detect motion intention of different hand and arm movements 

with accuracy ranges between 47% and 76% [2], [6].  

Movement-vs-rest and movement-vs-movement were 

classified using shrinkage LDA with accuracy of 55% for the 

movement-vs-movement and 87% for the movement-vs-rest 
[1]. Using the same EEG data from [1], other studies [7]–[10] 

used deep learning-based models to automate the feature 

extraction and selection steps. In [7], the authors used Deep 

Convolutional Neural Network to classify motor planning, 

referred to as a pre-movement, using the 1 s window segment 

preceding motion onset and reported an average accuracy of 

90.3% for rest vs. pre-movement. Applying Regional 

Attention Convolutional Neural Network for multi-class 

classification of six movement and rest classes showed an 

average accuracy of 42.6% and 33.1% for motor execution 

(ME) and motor imagination (MI), respectively [8]. In [9], the 

authors used Common Spatial Patterns (CSP)-based features 

for the Convolutional Neural Network (CNN) and reported an 

average accuracy of 87.92% for palm extension vs. hand 

grasp of ME. However, the authors used the same CSP 

algorithms, which itself is a supervised method for feature 

extraction, for both training and testing dataset, and 

subsequently biased the CNN’s outcomes. Finally, in [10], the 

authors used Wavelet–spatial filters ConvNet and 

discriminative spatial pattern to classify six movements for 

MI and reported an average of 31% accuracy.  

Notably, the first half of the signals after the cue produces 

higher accuracy; however, the model may not perform well in 

real-time applications as it is not known when and for how 

long a subject may imagine the task. In summary, none of the 

above mentioned studies used a) the full duration of ME or 

MI EEG signals after the cue (previous studies have used 

either one second before the motion begins or only up to the 
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first half of the signals after the cue), b) post-processing such 

as majority voting (MV), and c) varying window size from 1 

to 2 s. In another study using electromyography signals [11], 

we have demonstrated the importance of MV to improve the 

accuracy of MLs in classification. 

Using the open-access EEG data [1], this study aims to 

investigate the influence of ICA, window size, and MV for 

both ME and MI motion intention recognition, areas that have 

not been attempted previously. In addition, the performance 

of five popular ML is compared. 

II. METHODOLOGY 

A. Data Description 

An open-access EEG data [1] were used in this study. The 

EEG signals were acquired using 61 electrodes following the 

10-20 electrode location system. For the present study, only 

nine channels were considered: P4, Pz, P3, C4, Cz, C3, F4, 

Fz, and F3, as most of the brain activities related to movement 

are contained within these channels [12]. The data were 

collected from 15 healthy subjects (27±5 years old, nine 

females); all subjects were right-handed except for one. The 

subjects performed both ME and MI tasks. The tasks 

consisted of six motion classes and one rest class. The total 

length of the acquired EEG signals was five seconds, where 

at zero second, the subjects were alerted by a ‘beep’ sound, 

and at two seconds, a cue was presented on a computer screen 

to start performing a specific task. Once the cue was shown, 

the subjects were performed either ME or MI for three 

seconds. A total of 10 runs per subject and 60 trials per class 

were recorded. The sampling rate was 512 Hz. An 8th-order 

Chebyshev bandpass filter from 0.01 Hz to 200 Hz was 

applied to the dataset. A notch filter was also used to suppress 

the 50 Hz power line interferences. The dataset is described 

in more detail in [1]. 

B. Data Preprocessing 

The EEG signals were mean-centered, band passed 

between 1-40 Hz, and removed from any linear trends.  The 

ICA was used to remove electrooculogram (EOG) artifacts. 

First, the signals were decomposed into 30 components using 

fast-ICA algorithm [13]. Each of the components was then 

compared with three EOG signals. The ICA-component is 

assumed to be corrupted with eye-blinking artifacts if the 

correlation value between the component and EOG channels 

is greater than the mean plus two times the standard deviation. 

Figure 1 illustrates an example of automatically detecting 

corrupted components and the reconstructed EEG signals 

after removing the components.  

C. Feature Extraction  

The filtered EEG signals were segmented using the sliding 

window with an 80% overlapping strategy. The window size 

was varied from 1-2 s. Since the EEG signals are more active 

in the alpha (8-12 Hz) and beta (13-20 Hz) bands for motor 

activities [14], the band powers of these frequency ranges for 

each of the channels were computed. Additionally, two 

prominent time-domain features were extracted, waveform 

length (WL) and mean absolute value (MAV). As there are 

nine EEG channels and four features, the total number of 

features is 36. 

D. Machine Learning 

Five different MLs were used for classification, including 

KNN, LDA, SVM, RF, and NB. The algorithms’ tuning 

parameters were optimized using a grid search approach. The 

values were 3-NN, 2.63 for kernel scale and 1 for box 

constraint when using SVM with radial basis function (RBF) 

kernel, 100 trees for RF, and normal distribution for NB. All 

the algorithms were trained using nine trials and tested with 

the tenth trial, and repeated ten times to achieve 10-fold cross-

validation. Each algorithm’s performance was evaluated by 

calculating the mean accuracy.  

Majority voting (MV) as a post-processing technique was 

also employed to investigate if the classification accuracy can 

be improved further. MV considers more than one outcome 

from a classifier to reduce spurious results [11]. For example, 

the outcome of a 3-votes MV would be 1 for a predicted class 

of {1, 2, 1} due to the majority class of 1. A student’s paired 

t-test was used to compare between with and without MV. All 

analyses were conducted using custom-written scripts in 

MATLAB.  

III. RESULTS AND DISCUSSION 

Unlike the previous studies, we consider each of the sliding 

windows as a representative of rest or movement class after 

the cue presented to the subjects. The previous studies have 

used only the first half of the signals after the cue in their MLs, 

which is not realistic in the BCI application. Different 

strategies for both pre- and post-signal processing were 

considered. Results show that the sliding window with 2 s 

produces the best accuracy for all the ML algorithms (Fig. 2). 

The improvement in classification accuracies is much greater 

in MI (>5%) than in ME (<1%) when employing ICA. The 

MV significantly improves the classification accuracies in 

both MI (>1%) and ME (>2%) with p<0.05 except when used 

the NB algorithm (Table 1). All the results are further 

discussed in the subsequent subsections. 

A. Classification accuracies with different window sizes 

The classification accuracies were increased when the 

window size was increased (Fig. 2). In general, the accuracy 

improvement is more prominent in all the ML algorithms 

between the window sizes of 1.5 s and 2 s.  The two best 

algorithms are RF and SVM that consistently produce better 

accuracies than the other algorithms in both ME and MI. The 

ME classification accuracy was improved from 68.9% to 

71.5% and 70.8% to 73.8% using SVM and RF, respectively, 

with MV (p<0.05). A similar improvement trend was also 

observed in both RF and SVM when using with or without 

ICA and with or without MV in MI (Table 1). 

B. Classification accuracies with or without ICA 

In most cases, the ICA improves the accuracy values in 

both ME and MI. However, the accuracy improvement is 

more prominent in MI than in ME. With ICA, the mean 

accuracy improvement for all algorithms is 5.6% in MI 

(p<0.1) but negligible in ME (Table 1). This improvement 

indicates that eye-blinking artifacts are more prominent in the  
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(a) (b) 

Figure 1 EOG artifact removal using ICA, a) identified corrupted components shown in red dots, and b) reconstructed EEG signals (red) plotted on top of 

original (blue) EEG signals 

   
(a) (b) 

Figure 2 Classification accuracies after ICA using different machine-learning algorithms and window sizes, a) motor execution, and b) motor imagination. 

ICA-Independent Component Analysis, LDA-Linear Discriminant Analysis, KNN-k Nearest Neighbor, SVM-Support Vector Machine, RF-Random Forest, 

NB-Naïve Bayes, MV-majority voting, WMV-without majority voting. 

     
 

Figure 3 Confusion matrices for RF with a window size of 2 s. ME-motor execution, MI-motor imagination, MV-majority voting, Mov-movement.  

TABLE 1 MEAN CLASSIFICATION ACCURACIES FOR MLS WITH AND WITHOUT MV AND ICA. ABBREVIATIONS ARE DEFINED IN THE CAPTION OF FIGURE 2 

 
 

EEG signals during an imagination task than an execution 

task.  

C. Classification accuracies with or without MV 

The MV significantly improves the MLs’ performance in 

both ME and MI datasets (Table 1).  Overall, the RF with MV 

had the highest overall mean accuracy (73.8%) with the 

window size of 2 s (Fig. 3). NB without MV achieved the 

lowest accuracy of 59% with a window size of 1 s. MV 

implementation improves the prediction accuracy for both 

rest and movement classes (Fig. 2). Such improvement is 

expected as the MV considers successive windows to make a 

final decision. The reason is that the ML may fail in predicting 

the true class for a specific segment of EEG signal that may 

A B C D E F G H

Without MV With MV Without MV With MV Without MV With MV Without MV With MV

LDA 67.83 70.18 68.59 70.92 56.17 57.37 63.15 64.82 0.590 <0.01 0.024 <0.01 0.049

KNN 64.04 66.25 64.72 66.84 53.06 53.90 57.26 58.76 0.410 0.013 0.065 0.004 0.032

SVM 68.93 71.51 68.98 71.80 57.44 58.69 62.35 64.04 0.630 <0.01 0.051 0.008 0.008

RF 70.83 73.82 70.20 73.10 57.67 59.00 62.85 64.69 0.350 <0.01 0.117 <0.01 0.015

NB 61.63 62.16 60.83 61.63 53.43 53.84 57.81 58.41 0.420 0.170 0.114 0.065 0.065

ML

p values

B vs. D C vs. D F vs. H G vs. H D vs. H

ME MI

Without ICA With ICA Without ICA With ICA
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represent abrupt changes. Such a false result usually stands 

out in a successive prediction. The result indicates that the 

abrupt changes in EEG signals are higher in ME that may 

have confounded with the actual limb movement. 

D. Classification accuracies for ME and MI 

The mean classification accuracies of ME were higher than 

those of MI for all the classifiers. Without ICA and MV, the 

initial accuracy for ME was much higher than the accuracy 

for MI. With ICA, the accuracy improvement in MI (>5%) 

was much higher than in ME (<1%). With MV, the 

improvement was greater than 2% in ME and 1.5% in MI 

except using NB. Higher accuracy for ME are due to the fact 

that it is much easier to classify actual hand movements than 

imagined movements, as proven in other studies [1]. 

E.  Classification accuracies from different algorithms 

RF consistently performed better among all the MLs 

(73.8% in ME without ICA and 64.7% in MI with ICA). The 

worst performance in classifying motion intention was 

observed for NB (<63% in ME and <59% in MI). 

Nonetheless, the prediction accuracy for most of the ML was 

observed to be higher for the movement class than the rest 

class. 

F. Comparing results with previous studies 

Although the results of this study cannot be directly 

compared with the previous studies due to differences in types 

of classes, the accuracy values presented here are higher than 

other studies. For example, [1] reported the accuracy as a time 

series curve and found the peak accuracy of 85% and 73% for 

ME and MI, respectively, which were drastically reduced to 

less than 60% just after 0.75 s of movement onset. Such a 

reduction of accuracies indicated a much lower average 

accuracy than the present study. Notably, a higher accuracy is 

achievable only just after the cue-stimulation. However, such 

a scenario cannot be applicable in a real-time application as 

there will be no ‘cue-stimulation’ for a given task. For any 

EEG-based BCI application, it is important to estimate the 

expected (average) accuracy of employed ML rather than the 

peak accuracy since the location of the peak may not be 

known. In [7], the authors used 1 s of EEG data preceding the 

actual movement, and in [8], they classified all seven classes 

and reported 42.6% and 33.1% accuracy for ME and MI, 

respectively. In addition, the above-mentioned studies used 

all 61 EEG channels. Conversely, the present study achieved 

accuracies of 73.8% and 64.7% using only nine channels and 

RF for ME and MI, respectively, which are representative of 

motion intention at any moment after the onset, not only 

within the first second.  

IV. CONCLUSIONS 

This paper investigated the performance of five different 

MLs (KNN, SVM, LDA, RF, and NB) with window sizes 

ranging from 1 s to 2 s and MV to classify rest and upper limb 

movements using only nine EEG channels. The results 

showed that the ME could be recognized with 73.8% 

accuracy, while MI could be classified with 64.7% using RF 

along with MV. The mean accuracy improvement for all 

algorithms is 5.6% in MI (p<0.1) when ICA was employed. 

These accuracies are significantly higher than the previous 

studies as it represents the subject’s motion intention at any 

point after the movement onset rather than only within the 

first second of the ME/MI. The increase of window size 

improved the accuracies in both the ME and MI where the 

maximum accuracies occurred at 2 s. A paired t-test showed 

that the usage of MV significantly improves the accuracy in 

both ME and MI for all MLs except NB (p<0.05). Both RF 

and SVM performed consistently well for both ME and MI 

classifications, where the former algorithm yielded maximum 

accuracies. Classification of more movements will be 

investigated in future work.   
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