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Abstract— Synthetic lethality (SL) is currently one of the
most effective methods to identify new drugs for cancer
treatment. It means that simultaneous inactivation target of
two non-lethal genes will cause cell death, but loss of either
will not. However, detecting SL pair is challenging due to the
experimental costs. Artificial intelligence (AI) is a low-cost way
to predict the potential SL relation between two genes. In this
paper, a new Multi-Graph Ensemble (MGE) network structure
combining graph neural network and existing knowledge about
genes is proposed to predict SL pairs, which integrates the
embedding of each feature with different neural networks to
predict if a pair of genes have SL relation. It has a higher
prediction performance compared with existing SL prediction
methods. Also, with the integration of other biological knowl-
edge, it has the potential of interpretability.

I. INTRODUCTION

A. Background

Cancer poses a huge threat to human health. If a new
effective cancer drug can be found, it will not only bring
considerable economic benefits to pharmaceutical companies
but also give cancer patients more chance to survive.

At present, synthetic lethality (SL) is an important way
to find new drug targets for cancer treatment. It means that
simultaneous inactivation of two non-lethal genes will cause
cell death, but loss of either will not.

Finding an SL pair via traditional experimental way needs
a lot of resources. Artificial intelligence (AI) can predict
possible SL pairs at a much lower cost. Using AI, researchers
just need to do experiments to verify those predicted with
higher confidence of success than most gene pairs SL,
thereby saving considerable costs.

However, there is still little information about known SL
pairs, leading to data sparsity. SynLethDB [1] is currently the
most comprehensive SL database, but it only contains 36,746
human SL pairs. In fact, there are about 25,000 genes in
the human genome, resulting in more than 300 million gene
pairs.
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B. Existing Studies

Several attempts have been implemented to predict po-
tential SL pairs using AI methods. DiscoverSL [2], SLant
[3] and SLRF [4] use random forests to predict SL by
analyzing the attributes of genes and the relations between
genes (such as PPI, KEGG, etc.). These traditional machine
learning methods need much domain expertise and human
intervention to extract features.

Matrix decomposition methods, such as GRSM [5] and
SL2MF [6], consider the interactions between genes in the
training process, but the matrix used for analysis is big
and sparse, leading to high analysis cost and thus affecting
accuracy.

DDGCN [7] is a graph convolutional network which
solved the problem of matrix sparsity, but it does not
combine data with knowledge. This method is the first to
do SL prediction with Graph Neural Network(GNN). Their
work shows that GNN can capture the relations between
genes well. It would give biological experts more intuitive
comprehension if one method can integrate features about
inter-gene relations in the process.

C. Contributions

Here we first enhance the database by deleting gene pairs
with errors and adding seven additional features based on
other gene relation databases such as GO, Corum, Reactome,
etc. which indicate the biological connection of gene pairs.

We propose an novel Multi-Graph ensemble network
model which integrates an SL graph and multi gene relation
graphs to improve the performance of SL prediction.

II. DATA ACQUISITION

Synthetic lethality data was downloaded from
SynLethDB[1] which is the most comprehensive synthetic
lethality database. Human SL data in SynLethDB were
chosen, as we aim to find drug treatment for human
cancers. Some genes in SynLethDB were found to have
no corresponding ensemblID or uniprotID. Thus, these
genes were excluded from our final dataset. After the
pre-processing, we obtained 35,911 SL pairs among 9,862
genes.

To enhance the existing dataset, we added data from other
databases related to relations between proteins. We chose five
databases, namely Gene Ontology [8], Corum [9], Reactome
[10], KEGG [11] and STRING [12] to use. Corum and
STRING can provide data of protein complexes and protein-
protein interactions(PPIs) respectively. Reactome, KEGG
and biological process terms of GO (GO P) add information
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about pathways to the database. The other two terms of GO,
molecular function (GO F) and cellular component (GO C),
were used to add similar functions or locations of genes.
Finally, seven types of inter-gene relations were extracted
from these databases.

III. METHODS

In this section, we first introduce the notations and prob-
lem statement, and then present details of our proposed
multi-graph ensemble method, including different designs of
network structure.

A. Preliminary

Consistent with general GNN methods, our SL graph is
denoted by Gsl = (Usl, Esl), where the nodes U represent
genes, and the edges E represent SL relations. As the authors
of DDGCN [7] defined, SL prediction is formally, given
known SL pairs O+ , to predict the probability of two gene
being an SL pair for each unknown gene pair from O−.

B. Encoder Networks

Besides SL, other relations between genes are used to form
different graphs providing diverse biological meanings. The
graphs introduced above are denoted as Gcorum, Greactome,
Gkegg , Gppi, Ggo F , Ggo C and Ggo P .

The following steps combine all the gene relation informa-
tion to do SL prediction. Firstly, we use graph convolutional
network (GCN) [13] to generate multi-type node embeddings
over our multi-graph. Then these embeddings are introduced
to different network models. The GCN is used to learn
representations of the nodes by aggregating representations
of their immediate neighbours.

A two-layer GCN was implemented to capture node
embeddings. The layers are formulated as follows:

H
(1)
A = ReLU

(
ÃXW(1) +B,

)
H

(2)
A = ÃH

(1)
A W(2) +B.

In detail, Ã = D− 1
2 ÂD− 1

2 where Â = A + I and D is
a diagonal matrix with Dii =

∑n
j=1 Aij. A is the adjacent

matrix of gene relation graph. Feature matrix X is the initial
node features. W(1)is the weight matrix for the first GCN
layer, H(1)

A is the output of first GCN layer. The Rectified
Linear Unit (ReLU) is the most commonly used activation
function in deep learning. The function returns the origin
value if it receives a positive input, and otherwise it returns
0.

C. Multi-Graph Ensemble Knowledge Pretrained Network

Gcorum was dropped since it is too sparse. The Encoder
network includes two GCN layers applied in the following
graphs Gppi, Greactome, Ggoc , Ggop , Ggof and Gkegg . It was
used to capture multi-type node embeddings. Then the sum
value of these embeddings was used as input features X for
Gsl. The formulation is:

Xsl = Eppi + Ereactome + Egoc + Egop + Egof + Ekegg

After applying the GCN encoder to generate node embed-
dings of Gsl, for every pair of genes, we take the product of
two node embeddings and apply sigmoid to it. The output
value can be seen as the predicted probability of two gene
being an SL pair. The network structure is shown in Fig.1(a).

D. Multi-Graph Ensemble Fully Connected Network

Seven GCN encoders can capture multi-type node embed-
dings in parallel. The concatenated embedding was used as
input of Fully Connected (FC) Network. The FC network
includes three linear layers. This first method is named
Multi-Graph Ensemble FC (concat). The network structure
is shown in Fig.1(b).

Besides, we also tried two other different method for
combination of node embedding. One is summing multi-
type node embeddings as one embedding, where is used
as input in the FC network. This method is called Multi-
Graph Ensemble FC (sum). The other is using seven linear
layers as a weighted function, and then generating a weight
value of origin embedding. Take Gsl as an example, it can
be formulated as follows:

Esl = F (Esl) Esl

Where F is a linear layer. This method is named Multi-Graph
Ensemble FC (weighted concat).

E. Multi-Graph Ensemble Convolutional Neural Network

In order to take full advantage of Convolutional Neural
Network (CNN), we adjusted the input matrix. The network
structure is shown in Fig.1(c). As this figure shows, each
embedding of the another gene relation is adjacent to an SL
embedding. Thus, the convolutional kernel is an efficient way
to extract relation feature.

For our task, each gene pair has two embeddings, so this
matrix has 2 channels. As such, the shape of input matrix is
(14, dim embedding, 2).

IV. EXPERIMENTAL RESULTS

A. Experiment Setup

1) Dataset Construction: The dataset used in our exper-
iments is constructed from Gsl, Gcorum, Greactome, Gkegg ,
Gppi, Ggo F , Ggo C and Ggo P . The details are shown in Table
I.

TABLE I
THE DETAILS OF DATASET

Data Category Number
Gene nodes 9872
Gsl edges 35906

Gcorum edges 265
Greactome edges 11459
Gkegg edges 7308
Gppi edges 9649
GgoF edges 28972
GgoC edges 24187
GgoP edges 6945

1732



𝒢𝑝𝑝𝑖

Input knowledge graphs GCN layer Multi-type node embeddings

𝒢𝑟𝑒𝑎𝑐𝑡𝑜𝑚𝑒

𝒢𝑔𝑜𝑐

𝒢𝑘𝑒𝑔𝑔

…

…

𝒢𝑝𝑝𝑖 𝑁𝑒𝑡

𝒢𝑟𝑒𝑎𝑐𝑡𝑜𝑚𝑒 𝑁𝑒𝑡

𝒢𝑔𝑜𝑐
𝑁𝑒𝑡

𝒢𝑘𝑒𝑔𝑔 𝑁𝑒𝑡

…

ℰ𝑝𝑝𝑖1
ℰ𝑝𝑝𝑖2
ℰ𝑝𝑝𝑖3

ℰ𝑝𝑝𝑖𝑛

… …

…

𝒢𝑠𝑙

Node features 𝒳𝑠𝑙

𝒢𝑠𝑙 𝑁𝑒𝑡 GCN layer

…

Decoder layer

Predicted SL pairs 

Node embeddings ℰ𝑝𝑝𝑖

ℰ𝑟𝑒𝑎𝑐𝑡𝑜𝑚𝑒

ℰ𝑔𝑜𝑐

ℰ𝑘𝑒𝑔𝑔

Node embeddings of  𝒢𝑠𝑙

𝒢𝑠𝑙 𝒢𝑠𝑙 𝑁𝑒𝑡 ℰ𝑠𝑙

∑

𝑆𝑢𝑚

⋮

Input known SL graph Input SL node embeddings

ℰ𝑝𝑝𝑖 ℰ𝑠𝑙

… … …

Predicted SL pairs 

Gene_a  Gene_b  Probability
EPB42    RET        0.98
DCTN1   SMG6     0.91
TG           ATM        0.79

…      …      …    

FC layersConcatted node embeddings ℰ𝑐𝑜𝑛

△

𝐶𝑜𝑛𝑐𝑎𝑡

𝑆𝑝𝑙𝑖𝑐𝑒

Gene_a  Gene_b  Probability
EPB42    RET        0.98
DCTN1   SMG6     0.91
TG           ATM        0.79

…      …      …    

…

ℰ𝑟𝑒𝑎1
ℰ𝑟𝑒𝑎2
ℰ𝑟𝑒𝑎3

ℰ𝑟𝑒𝑎𝑛

…

ℰ𝑔𝑜𝑐1
ℰ𝑔𝑜𝑐2
ℰ𝑔𝑜𝑐3

ℰ𝑔𝑜𝑐𝑛

…

ℰ𝑘𝑒𝑔𝑔1
ℰ𝑘𝑒𝑔𝑔2
ℰ𝑘𝑒𝑔𝑔3

ℰ𝑘𝑒𝑔𝑔𝑛

…

ℰ𝑠𝑙1
ℰ𝑠𝑙2
ℰ𝑠𝑙3

ℰ𝑠𝑙𝑛

…

𝒳𝑠𝑙1
𝒳𝑠𝑙2
𝒳𝑠𝑙3

𝒳𝑠𝑙𝑛

…

ℰ𝑐𝑜𝑛1
ℰ𝑐𝑜𝑛2
ℰ𝑐𝑜𝑛3

ℰ𝑐𝑜𝑛𝑛

…

ℰ𝑝𝑝𝑖𝑎
ℰ𝑠𝑙𝑎

ℰ𝑠𝑙𝑎

ℰ𝑠𝑙𝑎

ℰ𝑠𝑙𝑎

ℰ𝑠𝑙𝑎

ℰ𝑠𝑙𝑎

ℰ𝑠𝑙𝑎

ℰ𝑟𝑒𝑎𝑎

ℰ𝑔𝑜𝑐𝑎

ℰ𝑔𝑜𝑝𝑎

ℰ𝑔𝑜𝑓𝑎

ℰ𝑐𝑜𝑟𝑢𝑚𝑎

ℰ𝑘𝑒𝑔𝑔𝑎

ℰ𝑐𝑜𝑟𝑢𝑚𝑏

ℰ𝑝𝑝𝑖𝑏
ℰ𝑠𝑙𝑏

ℰ𝑠𝑙𝑏

ℰ𝑠𝑙𝑏

ℰ𝑠𝑙𝑏

ℰ𝑠𝑙𝑏

ℰ𝑠𝑙𝑏

ℰ𝑠𝑙𝑏

ℰ𝑟𝑒𝑎𝑏

ℰ𝑔𝑜𝑐𝑏

ℰ𝑔𝑜𝑝𝑏

ℰ𝑔𝑜𝑓 𝑏

ℰ𝑘𝑒𝑔𝑔𝑏

Gene_a Gene_b

… …

Conv layers

… …

Gene_a  Gene_b  Probability
EPB42    RET        0.98
DCTN1   SMG6     0.91
TG           ATM        0.79

…      …      …    

FC layers

Predicted SL pairs 

(a) Multi-Graph Ensemble Knowledge Pretrained Network 

(b) Multi-Graph Ensemble FC Network

(c) Multi-Graph Ensemble CNN Network

…
…

…
…

Fig. 1. Multi-Graph Ensemble Network for SL Prediction

2) Dataset Splitting: The main task is to predict the
potential SL relation. Therefore, we only split the edges in
Gsl. Note that all edges in Gsl are positive. Some unknown
gene pairs were randomly selected and used as negative. The
ratio of our total samples is 1:1 (positive:negative). In order
to evaluate the performance of different models, 5-fold cross-
validation was used to train our model.

In order to evaluate the performance, 5-fold cross-
validation was employed. Noted that we renew the negative
samples by random sampling with replacement for each new
iteration. This allows the model to be fed more negative
samples, making the evaluation more objective.

B. Baselines

We compared our method with some classical GNN mod-
els:

• DeepWalk [14]: DeepWalk is a method which learns
the node embedding by combines random walk with
skip-gram language model.

• node2vec [15]: node2vec is very similar to DeepWalk,
it use flexible, biased random walks that can trade off
between local and global views of the network.

• SVD [16]: Among SVD is popular for biomedical
graph embedding. It focuses on factorizing the first-
order adjacency matrix.

• GAE [17]: GAE learn node embeddings by a GCN
encoder and an inner product decoder.

• GraphSAGE [18]: GraphSAGE can be viewed as a
stochastic generalization of graph convolutions, it learn
how to propagate information across the graph to com-
pute node features.

We reproduced some methods for SL prediction:

• SL2MF [6]: SL2MF is factorization-based methods for
SL prediction, which learns the embedding of genes by
logistic matrix factorization.The GO annotations and the
topological features of the PPI network are employed
for calculate the similarity.

• DDGCN [7]: DDGCN is at present one of the state-
of-the art models in SL prediction. It propose a novel
Dual-Dropout GCN structure for learning more robust
gene representations. DDGCN addresses the overfitting
problem on sparse graphs by employing both coarse-
grained node dropout and fine-grained edge dropout.

C. Multi-Graph Ensemble

In our experiment, the numbers of neurons in the two
GCN layers are 128 and 16. We adopted exponential learning
rating, meaning this model will decay the learning rate of
each parameter group by γ in every epoch. The initial leaning
rate was 0.01. In Multi-Graph Ensemble CNN, the size of
the convolution kernel was 2 and the dropout rate was 0.1.

D. Results of Performance Comparison

With the above experiment settings, the results are shown
in Table II.

1) Comparison with Baselines: For SL prediction, MGEs
achieved top performance in terms of all the three met-
rics. While DDGCN was considered the champion of SL
prediction, MGE FC (concat) is able to achieve further
improvement by 10.9% on AUROC metric and 5.8% on
AUPR metric. And the F1 metric increased 6.5% on MGE
CNN. At the same time, compared with other methods,
MGEs can increase about 10% on the three metrics. The
substantial performance improvement of MGEs was likely
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due to importing external knowledge and the idea of multi-
graph ensemble.

Since we train seven kinds of node representations at the
same time, the number of parameters of node embedding
increased to seven times of baselines. Hence our training
for node embedding end-to-end has increased computational
complexity. But the inference time does not change signifi-
cantly since our classification network is lightweight.

2) Comparison among Model Variants: Among the four
model variants of MGE in Table II, MGE FC (concat)
showed stength in AUROC and AUPR, and is competitive in
F1. We think this is because the concat method retains more
knowledge information and a simpler FC network is more
effective than a complex CNN network.

TABLE II
PERFORMANCE COMPARISON OF VARIOUS METHODS

AUROC AUPR F1
DeepWalk 0.8492 0.8697 0.7872
node2vec 0.8388 0.8424 0.7673
SVD 0.8627 0.8795 0.7972
GAE 0.7300 0.7340 0.6760
GraphSAGE 0.7458 0.8364 0.6971

SL2MF 0.7734 0.8589 0.7330
DDGCN 0.8460 0.8977 0.8140

MGE Pretrain 0.9465 0.9512 0.5518
MGE FC (sum) 0.9381 0.9432 0.8631
MGE FC (concat) 0.9553 0.9555 0.8783
MGE FC (weighted concat) 0.9381 0.9432 0.8631
MGE CNN 0.9521 0.9516 0.8786

E. Prediction of New SL Pairs

We predicted an unknown SL pair from the existing data,
TBK1 and VHL, with the probability of 0.93, later we found
it had been experimentally discovered by Hu et al.[19] in
May 2020. TBK1 and VHL appeared only 45 times and
once in the original SynLethDB respectively. Also we found
that 65 genes apperaed more than 100 times in SynLethDB.
In other words, we can accurately predict the SL relation of
genes with fewer occurrences, showing that our prediction is
valuable.

V. CONCLUSION AND FUTURE WORK

In this paper, we proposed a framework of multi-graph en-
semble network, and assembled MGE knowledge pretrained
network, MGE FC network and MGE CNN, which improved
the performance of SL prediction. Also, the original SL
database was enhanced.

In the future, the interpretability of the network will be
implemented based on attention mechanism. In addition,
since we constructed multiple gene-gene interation graphs,
we can take the link prediction task on PPI, GO C, GO P
and so on. Then the SL prediction task can be integrated
into a multi-task learning framework. The link prediction in a
knowledge graph can be considered as an auxiliary task. The
execution of these auxiliary tasks may improve the prediction
performance of our main task of SL prediction.
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