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Abstract— Fifth-generation (5G) cellular networks promise
higher data rates, lower latency, and large numbers of inter-
connected devices. Thereby, 5G will provide important steps
towards unlocking the full potential of the Internet of Things
(IoT). In this work, we propose a lightweight IoT platform
for continuous vital sign analysis. Electrocardiography (ECG)
is acquired via textile sensors and continuously sent from a
smartphone to an edge device using cellular networks. The
edge device applies a state-of-the art deep learning model for
providing a binary end-to-end classification if a myocardial
infarction is at hand. Using this infrastructure, experiments
with four volunteers were conducted. We compare 3rd, 4th-,
and 5th-generation cellular networks (release 15) with respect to
transmission latency, data corruption, and duration of machine
learning inference. The best performance is achieved using 5G
showing an average transmission latency of 110ms and data
corruption in 0.07% of ECG samples. Deep learning inference
took approximately 170ms. In conclusion, 5G cellular networks
in combination with edge devices are a suitable infrastructure
for continuous vital sign analysis using deep learning models.
Future 5G releases will introduce multi-access edge computing
(MEC) as a paradigm for bringing edge devices nearer to mobile
clients. This will decrease transmission latency and eventually
enable automatic emergency alerting in near real-time.

I. INTRODUCTION
Cardiovascular diseases are the main cause of deaths

worldwide and are responsible for approximately 18 million
death each year. In case of an acute myocardial infarction,
an immediate response increases probability of survival
significantly. However, victims often are unable to call for
help and multiple studies reported delays in emergency
calls by first-aiders [1]. This underlines the need for fully
automatic emergency alerts that need to be built upon a
reliable infrastructure [2].

Recently, textile sensors have been proposed for monitor-
ing of vital signs that are woven into stretchy fabrics, allow-
ing unobtrusive and continuous measurements [3], [4]. The
availability of large training data [5] lead to the development
of deep learning methods, e.g., convolutional neural networks
(CNN), showing strong performance in ECG classification
[6]. However, such complex algorithms require efficient and
fast processing, which is usually not possible on mobile
devices.

Proposed by the 3rd Generation Partnership Project
(3GPP), Relase 15 of the fifth generation (5G) cellular
network standard is currently deployed [7]. Future revision
will provide new technologies, namely enhanced Mobile
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Broadband (eMBB), ultra-reliable low latency communica-
tion (URLLC), and massive machine-type communication
(mMTC) [8]. eMBB aims for user experienced data rates
reaching 1 Gbit/s, URLLC for an over-the-air latency as low
as 1 ms, and mMTC for 106 clients per square kilometer.

Moreover, future releases will introduce 5G-powered
MEC. This principle substitutes centralized cloud computing
by directly processing the data where it is produced: at
the edge of the network [9]. This is seen as a catalyst for
the development of the IoT which embraces all kinds of
electrical devices with connectivity that are embedded in
smart homes [10], cars [11], or wearables [12]. The com-
bination of IoT technology with 5G MEC will significantly
reduce transmission latencies and increase security, which
will considerably transform healthcare processes [13].

In this work, we build upon these recent developments
and propose a platform for end-to-end classification of ECG
signals, which are acquired using textile sensors and con-
tinuosly transmitted via smartphone to an edge device for
real-time analysis.

II. MATERIAL AND METHODS
The proposed architecture is composed of a smart shirt, a

mobile application, an edge computing device, and a CNN-
based algorithm for real-time analytics (Fig. 1).
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Fig. 1. Proposed architecture: Vital data is sent continuously via Bluetooth
Low Energy (BLE) from a smart shirt to a 5G-enabled smartphone which
forwards the data to an edge device for end-to-end ECG classification. Icons
are freely available from https://www.flaticon.com/. See Acknowledgment.
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A. Smart shirt

Biosignals are acquired using an elastic fabric with in-
tegrated textile sensors (Hexoskin ProShirt1, Carré Tech-
nologies, Canada). Although not delivered as a medical
device, the shirt showed adequate accuracy [14]. It records
a single-lead ECG signal (256 Hz), thoracic and abdominal
respiration (128 Hz each), and accelerometry in all three
dimensions (64 Hz each). In this work, we consider the ECG
signal only.

B. Mobile application

We developed a custom mobile application for the Android
operating system (≥ v5.0) incorporating a commercially-
available software development kit (SDK) provided by the
vendor of the smart shirt. After starting the mobile applica-
tion and connecting to the smart shirt, data is transmitted
continuously in real-time via BLE using batches of 16
ECG samples. In a parallel process, the application serves
as a Message Queuing Telemetry Transport (MQTT) client
forwarding the data to the edge device using the Eclipse Paho
Android Service library2.

C. Edge device

The Jetson Xavier NX Developer Kit3 (6-core NVIDIA
Carmel ARM 64-bit CPU, 8 GB RAM, NVIDIA Volta GPU;
power mode 15 W; NVIDIA Corporation, CA, USA) serves
as edge device featuring the vendor-provided operating sys-
tem based on Ubuntu Linux. The device is located within
the network of a technical university and serves as MQTT
broker using Eclipse Mosquitto4. We used the out-of-the-box
configuration without transmission encryption.

D. Data analytics

We re-implemented the deep learning neural network
architecture proposed by Acharya et al. [15] using Python3
and GPU-enabled Tensorflow5 and Keras6. This CNN archi-
tecture with 11 layers provides a binary decision whether a
myocardial infarction is detected in short single-lead ECG
signals or not. We adjust the sampling rate (256Hz) and
process signal length signals of 10sec only. Training was
performed on Google Colab7 before the model was trans-
ferred to the edge device.

III. EXPERIMENTS

We compare 3G (Universal Mobile Telecommunications
System (UMTS)), 4G (Long Term Evolution (LTE)), and
5G cellular networks in their capabilities serving as in-
frastructure for the proposed architecture with respect to
transmission latency, data loss, and inference duration.

1https://www.hexoskin.com
2https://www.eclipse.org/paho/index.php?page=clients/android/index.php
3https://developer.nvidia.com/embedded/jetson-xavier-nx-devkit
4https://www.mosquitto.org/
5https://www.tensorflow.org/
6https://www.keras.io/
7https://colab.research.google.com/

TABLE I
DESIGN OF A SINGLE EXPERIMENT. WE CONDUCT THIS EXPERIMENT

THREE TIMES, RESULTING IN 126MIN OF TOTAL DATA.

Part 1 Part 2

Smartphone A 3G 3G 3G 4G 4G 4G
Smartphone B 5G 5G 5G 5G 5G 5G
Duration (min.) 7 7 7 7 7 7∑

Duration (min.) 21 21

A. Experimental design

We perform three experiments on an empty parking lot in
a medium-sized German city. Before each experiment, we
synchronized the time on all devices using the network time
protocol (NTP). To ensure that no temporal effects bias our
results (e.g., load on the cell tower), we perform experiments
in parallel (Table I). We divide each experiment into two
parts: 3G vs. 5G and 4G vs. 5G. To assess effects of session
initiation, each part consists of three runs of 7 min. In total,
we acquired data with a duration of 126min.

In each experiment, two subjects in parallel are wearing a
smart shirt linked with the mobile application. One applica-
tion is running on a not-5G-compatible smartphone (OnePlus
5T; OnePlus Technology, Guangdong, China) while the other
is running on a 5G-compatible smartphone (Pixel 4A 5G;
Google, CA, USA) with similar specifications. Both smart-
phones are equipped with the same data plan for business
customers with unlimited volume (Business Mobil XL Plus,
Deutsche Telekom AG, Germany). We establish 3G and
4G connectivity manually using Android operating system
features.

B. Study population

N = 4 healthy volunteers (gender: 1 female, age: 25.2±
6.2 years, weight: 64.4 ± 9.6 kg, height: 171.8 ± 10.9
cm; arithmetic mean ± standard deviation) took part in the
experimental evaluation of our edge computing architecture.
Written informed consent was obtained from the subjects
regarding storage and analysis of collected data.

IV. RESULTS

We did not observe any abnormalities (e.g., application
crashes) on the smartphones during experiments. On both
smartphones, the system load was low. It was ensured that
both smartphones were connected with the same cell tower
by comparing the cell id.

We perform the evaluation retrospectively by comparing
MQTT broker log-files and MQTT client log-files stored on
the smartphones (Fig. 2). As the data is received from the
smart shirt and forwarded to the MQTT broker in batches
of 16 samples, we perform linear interpolation to compute a
single timestamp for each ECG sample received on the edge
device. Two log-files on the edge devices are excluded from
analysis as they were corrupted.
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Fig. 2. Example of latency between smartphone and edge device and data
corruption. As can be seen, signals received on the edge device are delayed
due to transmission. The red arrows indicates corrupted data on the edge
device. The range of amplitudes of both signals is identical but the y-axis
was split by vertically moving the received signal to increase visibility.

A. Results of transmission latency

By assigning received ECG sample values on the edge
device with values sent by the smartphone, we compute their
transmission delay (Fig. 3). The 3G latency distribution is
a bimodal distribution with two peaks centered at 137ms,
210ms, respectively. The second peak is associated with
sudden changes in the transmission delay we observed in
the data. The 4G and 5G latency distributions are both
approximately Gaussian showing a mean of 134ms and
114ms, respectively.

B. Results of data corruption or loss

Additionally, we compute the number of missed or cor-
rupted ECG samples using a heuristic approach. We align
sent and received samples and use a sliding window approach
to detect unequal or missing values. The red arrow in Fig. 2
indicates corrupted ECG samples on the edge device. The
average number of missing or unequal ECG samples are
2.98± 6.23% (3G), 0.85± 1.4% (4G), 0.07± 0.06% (5G).

C. Results of inference duration

We apply the deep learning model to the ECG data after
the experiments. We feed all received data in two parallel
processes to the pre-trained Keras model in segments of
10sec and store the duration of inferencing (Fig. 4).

Using GPU support, more than 98% of values are in the
range of 150− 180ms with a peak at approximately 165ms.
We did not observe effects of GPU “warm-up”. Disabling
the GPU and using CPU only, inferencing is almost always
slower than the GPU and less stable, resulting in a broad
distribution reaching maximum durations up to 250ms.

Fig. 3. Histograms of transmission delays from smartphone to edge
device using 3G/4G/5G cellular networks. Data shown is averaged over
all conducted experiments.

Fig. 4. Histogram of ECG inference durations in segments of 10sec. Values
larger than 250ms (GPU: 1.2%, CPU: 2.1%) on the x-axis are clamped to
250ms to increase visibility.

V. DISCUSSION

A. Results

Outdoor experiments with four volunteers at a stationary
position show that transmission delays of approximately
110ms and GPU inference delays smaller than 180ms can
be reached. It should be noted that we did not fine-tune the
MQTT connection or deep learning architecture. Therefore,
reported results can possibly be improved.

However, we cannot estimate the BLE transmission delay
between smart shirt and smartphone and therefore the real
delay between ECG sensor activation to classification is
slightly larger. BLE delays as low as 5ms have been reported
in literature which reach – in worst-case scenarios – values
up to approx 50ms [16]. Therefore, we believe that total
duration can be kept below 300ms using the proposed
infrastructure in combination with 5G.

Certainly, our base functionality poses limitations. No
security mechanisms, such as encrypted data transmission
or user authentification were implemented. We aimed for
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developing the “core” platform, which serves as bottom base-
line with respect to functionality. In future work, we will add
features and analyze their influence on measured parameters.

Additionally, experiments were performed at a stationary
location. Therefore, the influence of switching between dif-
ferent cell towers or dead spots with no reception need to be
addressed. Furthermore, we only processed two single-lead
ECG signals in parallel on the edge device. Hence, the impact
of higher data load on performance needs to be evaluated.

Regarding ECG analysis, we used a pre-defined deep
learning model for detection of myocardial infarction [15].
Training data was acquired from freely-available databases
measured with conventional ECG devices [17]. However,
it is not guaranteed that the ECG signal measured via
a textile sensors has the same morphology. Furthermore,
motion artefacts pose a serious problem that might lead
to false classification. Therefore, our future research aims
at analyzing these aspects as well as adding other ECG
analysis methods, e.g., delineation enabling the measurement
of clinically relevant intervals [18].

B. Limitations

Our data analysis has certain limitations with respect to
accuracy. Aligning time-delayed data from multiple sen-
sors with potential data loss or corruption is a non-trivial
task [14]. Although we confirmed our results manually,
our analysis may be biased. However, as signals from all
experiments were processed by the same algorithm, the order
of decreasing data corruption/latency from 3G over 4G to 5G
should be maintained even if the heuristic is biased.

Additionally, two different smartphones were used. How-
ever, both have similar specifications and the developed app
has only minimal hardware requirements. Therefore, we do
not expect a significant bias due to the different hardware.

Furthermore, it should be added that a fundamental issue
of the proposed archiecture is the susceptibility to the cel-
lular network coverage and energy consumption due to data
transfer. Deploying the ECG analysis on the smartphone by
means of a finely-adjusted CNN would be a more reliable
solution w.r.t. these aspects. However, there are also cons
like increased energy consumption due to inference. Such
an approach could serve as a valuable ”fallback” method in
case of celullar dead zones.

C. Outlook

In this work, 5G networks in current 3GPP Release 15
building upon existing 4G infrastructure (“Non-stand alone
mode”) were used. Future releases will enable the “Stand
alone mode” and introduce URLLC and eMBB, enabling
even lower latencies and higher data rates, respectively.

For the deployment of the edge device we used a con-
ventional “cloud” architecture over the internet. New tech-
nologies such as 5G-enabled MEC [19] or network slicing
[20] will introduce new features with potential value for the
proposed platform (Fig. 5). Bringing the edge device closer
to the smartphone reduces latency and eventually advances
fully automatic emergency alerts in near real-time [2].

BLE

5G

Smartphone

Edge DeviceSmart Shirt

Fig. 5. Envisioned architecture: Powered by the principles of 5G MEC
the edge device can be brought into proximity of the smartphone, thereby
decreasing latency. Furthermore, data is not sent via the unsafe channel
internet, increasing data security. The arrow between cell and edge device
is not labeled as there is not de-facto MEC standard, yet.

VI. CONCLUSION

The sudden onset of cardiac diseases such as myocardial
infarction require an immediate response. We report on
an IoT platform which enables the continuous processing
of single-lead ECG signals. Our results show that a de-
lay ≤ 300ms from ECG sensor measurement to end-to-
end classification can be reached. Further revisions of 5G
cellular networks could significantly enhance the proposed
architecture.
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