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Abstract— In this paper, we propose a time-series stochastic
model based on a scale mixture distribution with Markov
transitions to detect epileptic seizures in electroencephalogra-
phy (EEG). In the proposed model, an EEG signal at each
time point is assumed to be a random variable following a
Gaussian distribution. The covariance matrix of the Gaussian
distribution is weighted with a latent scale parameter, which is
also a random variable, resulting in the stochastic fluctuations
of covariances. By introducing a latent state variable with a
Markov chain in the background of this stochastic relationship,
time-series changes in the distribution of latent scale parameters
can be represented according to the state of epileptic seizures. In
an experiment, we evaluated the performance of the proposed
model for seizure detection using EEGs with multiple frequency
bands decomposed from a clinical dataset. The results demon-
strated that the proposed model can detect seizures with high
sensitivity and outperformed several baselines.

I. INTRODUCTION

Epilepsy is a heterogeneous neurological disorder char-
acterized by a transient abnormal discharge of neurons.
This disorder involves recurrent and unprovoked seizures
called epileptic seizures [1]. The most common method for
detecting epileptic seizures is electroencephalography (EEG)
recorded from the scalp. However, the detection of seizures in
clinical practice relies on visual inspection, which requires a
high level of expertise, and also places a heavy burden on the
epileptologist because of the need for prolonged observation.

Various attempts have been made to automatically detect
epileptic seizures from EEG [2]–[6]. Many of these studies
focused on capturing the features that reflect the specific mor-
phologies of seizure activity from EEG. The effectiveness of
time-domain methods, such as the root mean square (RMS)
and entropy [3], and time-frequency domain methods, such
as wavelet-based features [4], has been demonstrated.

There is a time-dependent evolution of physiological states
behind the changes in EEG characteristics with the onset and
progression of seizures. To capture such a non-stationarity of
EEG, its dynamic characteristics should be directly consid-
ered. Several previous studies have used machine learning
techniques that take into account the time-series nature of
EEG for seizure detection, and have outperformed framewise
static classifiers [5], [6].

Meanwhile, we previously focused on the non-Gaussianity
of EEG and proposed a stochastic model based on the
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Fig. 1. Graphical model of the proposed hidden Markov scale mixture
model (HMSMM). The shaded and white circles represent the observed
and latent random variables, respectively.

scale mixture distribution [7] called the scale mixture model
(SMM). This model can represent the stochastic fluctuations
latent in the amplitude of EEG. We have shown that an
index defined based on the model may be more effective
than conventional time-domain features in detecting epileptic
seizures. However, this model is static in nature and cannot
track the dynamic properties of time-series EEG.

This paper proposes a discrete state-space EEG model that
incorporates the scale mixture distribution and apply it to
epileptic seizure detection. The proposed model, referred to
as the hidden Markov SMM (HMSMM), is capable of rep-
resenting the distribution changes between the non-seizure
and seizure states of EEG by switching the distribution
of the latent scale parameter based on Markov transitions.
We evaluated the detection performance of the proposed
HMSMM experimentally using a clinical EEG dataset.

II. HIDDEN MARKOV SCALE MIXTURE MODEL
(HMSMM) OF EEG

A. Model structure

Fig. 1 shows a graphical model of the proposed HMSMM.
The state transitions existing in the background of EEG
generation are represented by a discrete latent variable zt.
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The emission distribution from each state is based on the
SMM. In this model, EEG xt ∈ RD (D is the number
of electrodes) at time t from each state is represented by
a conditional Gaussian distribution. The covariance matrix
of the Gaussian distribution is weighted by a latent scale
parameter utk (k = 1, 2, . . . ,K; K is the number of states),
which is also a random variable. The stochastic behavior of
utk switches with state transitions, and its randomness causes
the covariance matrix to fluctuate at each time point, which
results in the modulation of the Gaussianity of the EEG.

For state k, the EEG signal xt is assumed to be generated
from the following scale mixture distribution:

p(xt|ztk = 1)

=

∫
N (xt|µk, utkΣk)IG(utk|νk/2, νk/2)dutk, (1)

where zt = {ztk} is the latent variable based on the 1-
of-K representation, and assigns observations to each state.
N (xt|µk, utkΣk) denotes the Gaussian distribution:

N (xt|µk, utkΣk)

= (2π)−
D
2 |utkΣk|−

1
2 exp

[
−
u−1tk

2
d(xt;µk,Σk)

]
,

(2)

where µk and Σk are the mean vector and covariance
matrix, respectively, d(xt;µk,Σ) is the squared Mahalanobis
distance, and utk is the latent scale parameter following an
inverse gamma distribution given by

IG(utk|ak, bk) =
bakk

Γ(ak)
(utk)−ak−1 exp

[
− bk
utk

]
. (3)

The state transitions from zt−1 to zt can be represented
by the conditional distribution p(zt|zt−1). Because zt is K-
dimensional binary variable, this conditional distribution is
denoted by the matrix form A ∈ RK×K , which elements are
transition probabilities given by

p(zt|zt−1) =

K∏
k=1

J∏
j=1

A
zt−1,jztk
jk , (4)

where 0 ≤ Ajk ≤ 1 and
∑
k Ajk = 1. The initial state z1

is a special case because the previous state does not exist;
therefore z1 is expressed as

p(z1) =

K∏
k=1

πz1kk , (5)

where
∑
k πk = 1.

B. Inference of states

Our goal is to predict the latent seizure states by calcu-
lating the posterior distribution p(zt|X) given an observed
EEG sequence X = {x1, . . . ,xT }. We can calculate this
efficiently based on the forward-backward algorithm [8] as

follows:

p(zt|X) =
p(X|zt)p(zt)

p(X)

=
p(x1, . . . ,xt, zt)p(xt+1, . . . ,xT |zt)

p(X)

=
α(zt)β(zt)

p(X)
, (6)

where α(zt) is calculated by the forward recursive calcula-
tion given by

α(zt) = p(xt|zt)
∑
zt−1

α(zt−1)p(zt|zt−1), (7)

α(z1) = p(z1)p(x1|z1) =

K∏
k=1

{πkp(x1)}z1k , (8)

and β(zt) is calculated by the backward recursive calculation
as follows:

β(zt) =
∑
zt+1

β(zt+1)p(xt+1|zt+1)p(zt+1|zt). (9)

The denominator of (6) is given by p(X) =
∑

zT
α(zT ). To

make predictions for novel data, the parameters of the state
transition and emission distribution must be learned from
the given training data in advance. In the next subsection,
we outline the learning algorithm of the proposed model.

C. Learning algorithm
Let a set of EEG sequences D = {X1, . . . ,XN}, where

Xn = {xnt}Tn
t=1 is an n-th sequence of length Tn, be

the training set. Assuming that the hidden state sequences
{znt} corresponding to the EEG sequences D are available
at the training stage (e.g., clinical annotation of seizures by
experts), the model can be trained in a supervised manner.

1) Update the transition parameters: In this step, the
transition probabilities are calculated between states. The
initial and transition probabilities can be updated as follows:

πk =
N1
k∑K

k=1N
1
k

, Ajk =
Njk∑K
k=1Njk

, (10)

where N1
k is the number of times that the initial state is k

in all sequences, and Njk is the number of transitions from
state j to k in all sequences.

2) Update the emission distribution: The parameters of
the emission distribution for each state are estimated based
on the expectation-maximization (EM) algorithm [7], [8].
The E-step calculates the expectation of the complete-data
log-likelihood:

Q(νk,µk,Σk) = E
[
ln

N∏
n=1

Tn∏
t=1

K∏
k=1

zntkN (xnt|µk, untkΣk)

× IG(untk|νk/2, νk/2)

]
. (11)

The following expectation is calculated using the current
parameters:

τntk , E[u−1ntk] =
νk +D

νk + d(xnt,µk,Σk)
. (12)
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In the M-step, Q(νk,µk,Σk) is maximized with respect to
each parameter, and the update equations are obtained:

newµk =

∑N
n=1

∑Tn

t=1 zntk τntkxnt∑N
n=1

∑Tn

t=1 zntkτntk
, (13)

newΣk =

∑N
n=1

∑Tn

t=1 zntk τntk(xnt − µk)(xnt − µk)>∑N
n=1

∑Tn

t=1 zntk
.

(14)

The parameter νk is estimated by iteratively maximizing
Q(νk,µk,Σk) using the bisection method:

newνk = arg max
νk

Q(νk,µk,Σk). (15)

The EM iteration repeats until the calculation converges.

III. EXPERIMENTS

We evaluated our model on the clinical EEG dataset used
in [7]. The dataset contains scalp EEG recordings from 20
epileptic patients with focal epilepsy (age: 0.5 to 41 years).
The EEG data were recorded with a sampling frequency of
500 Hz. The 19-channel surface electrodes (D = 19) were
placed on the scalp according to the international 10–20 elec-
trode system, with reference electrodes on both earlobes: A1
and A2. Each patient had a single EEG sequence containing
the seizure duration. The average data length and seizure
duration were 315.0±42.4 s and 48.8±23.7 s, respectively.
The experiments were approved by the Okayama University
Ethics Committee (approval No: 1706-019). The onset and
offset of a seizure in each EEG recording were marked by
a board-certified epileptologist.

EEG has different characteristics depending on the fre-
quency band. Therefore, the EEG signals were decomposed
into five frequency bands using a filter bank: δ (1–3 Hz), θ
(4–7 Hz), α (8–12 Hz), β (13–24 Hz), and γ (25–80 Hz).
These are the common frequency bands in EEG analysis.
To reduce differences in the EEG amplitude range caused
by scalp impedance and other factors for each subject, each
EEG sequence was normalized by dividing it by the standard
deviation of its first 5 s. For post-processing, the estimated
latent state sequence was smoothed by averaging them with
a moving window of length 5 s.

In this experiment, three states (K = 3) were considered:
pre-seizure (state 1), seizure (state 2), and post-seizure (state
3). The transition probabilities between these latent states
were constrained as follows:

Ajk =

 a11 a12 0
0 a22 a23

a31 0 a33

 . (16)

This matrix structure ensured that state transitions were
only allowed in the order of pre-seizure, seizure, and post-
seizure, and after post-seizure, the state returned to pre-
seizure. Only the non-zero elements in (16) were estimated
through training.

The performance of the proposed model was compared
with that of the Gaussian-based hidden Markov model

(GHMM), original SMM [7], linear logistic regression
(LLR), and multi-layer perceptron (MLP). The same pre-
and post-processing as that in the proposed model were per-
formed for these baseline models. The GHMM has the same
time-series structure as the proposed model, but the emission
distribution is replaced by a Gaussian distribution. The SMM
corresponds to the proposed model without the time-series
structure. Each learned SMM p(x|zt) was constructed by
fitting the model for each state, and the seizure probability
(state 2) was calculated based on

p(zt2 = 1|xt) =
p(zt2 = 1)p(xt|zt2 = 1)∑

k p(ztk)p(xt|ztk)
, (17)

where p(ztk) was fixed to the proportion of each state in
the dataset. The MLP had a single hidden layer with 15
units and was trained using stochastic gradient descent with
a batch size of 256 and learning rate of 0.001. A weight
decay of 1.0 × 10−5 was used. The discriminative models,
LLR and MLP, could not be trained well for each EEG band
and achieved very poor prediction performance. Thus, to
stabilize these inferences, amplitude features were extracted
by calculating the RMS for each EEG band and channel, and
used to evaluate the performance of LLR and MLP. The RMS
is the one of the most common features that characterizes the
amplitude information of EEGs [3]. The RMS was calculated
continuously using a moving window of length 2 s.

We used leave-one-patient-out cross-validation to evaluate
the models. Data from a single patient were used as a test
set and data from the remaining patients were used as the
training set for the models. This validation procedure can be
used to evaluate the generalization performance of a trained
model on new patients. For each model, the segments for
which the output seizure probabilities exceeded 0.5 were
defined as the detected seizure segments and the reminder as
the non-seizure segments. Seizure detection performance was
quantitatively evaluated using five metrics: sensitivity, speci-
ficity, Matthews correlation coefficient (MCC), area under
the receiver operating curve (AUC-ROC), and area under the
precision-recall curve (AUC-PR). Sensitivity and specificity
are measures of the proportion of seizure and non-seizure that
are correctly classified for all prediction results, respectively.
The MCC is essentially a correlation coefficient between the
true and predicted binary classification, with a value between
−1 and +1. This metric is generally regarded as a balanced
measure because it can consider all true and false positives
and negatives. The AUC-ROC and AUC-PR are measures
calculated from the ROC and PR curve, respectively, and
provide summary scores that capture behavior at a range of
detection thresholds. Each metric was averaged across all
validation sets.

IV. RESULTS

Fig. 2 shows an example of the seizure detection results
for two patients. The top and bottom panels present the raw
EEG signals for each channel and the time-series detection
results of seizures obtained by the proposed and baseline
models, respectively. The areas surrounded by black dashed
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Fig. 2. Raw EEG signals and corresponding detection results from the proposed HMSMM and baselines. (a) Patient A. (b) Patient B. Seizure onset and
offset are indicated by the vertical dashed lines. The results of the proposed HMSMM are shown for all bands. The results of the baseline models are
shown only for the band with the highest MCC across the validation.

TABLE I
QUANTITATIVE RESULTS FOR EACH MODEL

Model (band) Sensitivity Specificity MCC AUC-ROC AUC-PR

Baseline model†
GHMM (θ) 0.276 ± 0.329 0.981 ± 0.029 0.290 ± 0.342 0.838 ± 0.195 0.613 ± 0.305
SMM (θ) 0.202 ± 0.283 0.984 ± 0.033 0.231 ± 0.297 0.837 ± 0.215 0.599 ± 0.294
LLR (α) 0.302 ± 0.359 0.983 ± 0.032 0.310 ± 0.367 0.842 ± 0.177 0.629 ± 0.290
MLP (α) 0.442 ± 0.402 0.892 ± 0.119 0.308 ± 0.321 0.705 ± 0.268 0.512 ± 0.340

Our model
HMSMM (δ) 0.374 ± 0.304 0.905 ± 0.122 0.300 ± 0.284 0.746 ± 0.197 0.444 ± 0.254
HMSMM (θ) 0.502 ± 0.369 0.910 ± 0.138 0.420 ± 0.331 0.836 ± 0.220 0.617 ± 0.310
HMSMM (α) 0.631 ± 0.285 0.890 ± 0.143 0.519 ± 0.291 0.868 ± 0.167 0.654 ± 0.308
HMSMM (β) 0.520 ± 0.396 0.946 ± 0.073 0.453 ± 0.337 0.864 ± 0.180 0.671 ± 0.296
HMSMM (γ) 0.556 ± 0.365 0.806 ± 0.248 0.347 ± 0.320 0.760 ± 0.264 0.570 ± 0.316

†The results of the baseline models are shown only for the band with the highest MCC across the validation.

lines indicate epileptic seizure occurrences diagnosed by an
epileptologist. Note that the proposed HMSMM shows the
results for all frequency bands (δ–γ), whereas each baseline
model only shows the results for the band with the highest
overall MCC.

Table I summarizes the mean and standard deviations
of the evaluation metrics for each model obtained through
leave-one-patient-out cross-validation. As in Fig. 2, for the
baseline models, only the results for the band with the
highest MCC are shown. The maximum value for each
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Fig. 3. Number of patients with the highest MCC in each band

metric appears in bold. The proposed HMSMM tended
to outperform the baseline models for all metrics except
specificity, particularly in the α and β bands. Fig. 3 shows
the results of counting the frequency band with the highest
MCC in the detection of each subject based on the cross-
validation of the proposed model. For example, the count of
the α band was 7, which means that the highest MCC in the
α band was obtained in 7 out of 20 patients.

V. DISCUSSION

In the proposed model, the detection results corresponding
to the clinical annotations of seizures were obtained around
the α, β, and γ bands (Fig. 2). However, the γ band showed
a relatively high rate of false positives in the post-seizure
regions. This may reflect the muscle activity that occurs
after seizures. The baseline probabilistic models, GHMM and
SMM, failed to detect the seizure segments in both examples.
Although MLP and LLR could detect seizure segments, to
some extent, the results did not achieve stability and lacked
contiguity. These results indicate that the proposed model can
detect seizures more correctly than the baselines by capturing
both the stochastic features of EEG and their transitions.

The detection performance of each model is quantified
in Table I. Overall, the proposed model outperformed the
baseline models. High detection ability was achieved in the α
and β bands for MCC and AUCs, which are comprehensive
prediction scores, meaning that the proposed model has a
relatively balanced detection ability. In terms of sensitivity
and specificity, the proposed model had a higher sensitivity
than the baselines, but lower specificity. Although there is
a trade-off between sensitivity and specificity, a balance
between them is generally important. However, from the
viewpoint of the burden on clinical practice, it is necessary to
reduce false alarms as much as possible; hence, in the future,
the specificity of the proposed model should be improved
while maintaining its sensitivity.

In the proposed model, although the α band tended to
show the highest detection performance, the δ, θ, and β bands
scored better in terms of specificity. In fact, Fig. 2 indicated
that there were fewer false positives in non-seizure segments
in the β band. Fig. 3 shows that the best frequency band
was different for each subject. Although a relatively large
number of patients showed the best detection performance

in the α band, more than half of the patients showed the
best performance in the other band, especially the θ and
β bands. The reason for this may be that the frequency
characteristics of the EEG activity associated with epileptic
seizures differed depending on various factors, such as the
age of patients, presence of body movement, and duration
of seizures. Therefore, combining the detection results for
multiple frequency bands is expected to improve detection
performance.

In this paper, the state-posterior distribution p(z|X) was
estimated for the novel data X based on the backward-
forward algorithm. Because this algorithm requires future
values of data in the estimation of the state at each point,
the proposed model is suitable for offline detection. This
is expected to lead to applications such as the automatic
detection of the number of seizures and their duration from
long-term EEG recordings. However, in clinical practice, it
is also important to detect seizures immediately while moni-
toring the patient in real time. This type of application could
be achieved by introducing an online prediction algorithm
based on the sequential forward calculation.

VI. CONCLUSION

In this paper, we proposed a time-series SMM of EEG
based on a hidden Markov structure and applied it to seizure
detection. The proposed model can represent the time-series
changes of EEG for seizures by switching the distribution
of the latent scale parameter based on Markov transitions.
We validated our model on clinical EEG data from 20
focal epileptic patients. The results demonstrated that the
proposed model outperformed several baseline approaches
including the GHMM, original SMM, and classical frame-
wise detection methods. In the future, we will introduce
the combination learning of multiple frequency bands and
conduct a further evaluation using a greater number of
datasets.
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