
  

  

Abstract—Human gait can serve as a useful behavioral trait 
for biometrics. Compared to fingerprint, face, and iris, the most 
commonly used physiological identifiers, gait can be 
unobtrusively monitored from a distance without requiring 
explicit involvement and physical restraint from people. 
Advances in wearable technology facilitate direct and faithful 
measurement of gait motions with easy-to-use and low-cost 
inertial sensors. This study aimed to propose an approach to 
using kinematic gait data collected with wearable inertial 
sensors for reliable personal identification. Sixty-nine 
individuals ranged in age from 24 to 62 years old participated in 
this study. The 3-axis acceleration and the 3-axis angular 
velocity signals were measured using the inertial measurement 
units attached to the feet, shanks, thighs, and posterior pelvis 
while walking. The gait spectrograms were acquired by applying 
time-frequency analyses to the lower body movement signals 
measured in one stride. Among each participant's 15 strides, 12 
strides were used in the 4-fold cross validation of the deep 
convolutional neural network-based classifiers, and the 
remaining three strides were used to evaluate the classifiers. An 
accuracy of 99.69% was achieved by using the foot, shank, thigh, 
and pelvic spectrograms, and the accuracy was 96.89% using 
only the foot spectrograms. This study has the potential to be 
applied in behavior-based biometric technologies by confirming 
the feasibility of the proposed kinematic and spectrographic 
approaches in identifying personal behavioral characteristics. 
 

Clinical Relevance—The proposed approach for automatic 
and effective personal identification can be utilized in smart 
residential and care facilities to provide customized healthcare 
services through unobtrusive gait monitoring of individuals.  

I. INTRODUCTION 

Intelligent robots and systems in smart environments can 
play a very important role in improving quality of life of 
human beings based on ambient intelligence (AmI). Especially, 
residential and care facilities with cloud computing and 
Internet of Things environments can provide customized life-
enriching services through unobtrusive long-term monitoring 
of individuals using wearable and ambient devices or mobile 
robots. As an indispensable technology to realize the foregoing, 
biometrics has been drawing attention for automatic and 
effective personal recognition and identification. 

Biometric identifiers are categorized into physiological 
identifiers and behavioral identifiers. Fingerprint, palm, face, 
iris, and vein pattern are included in the physiological 
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identifiers. The behavioral identifiers include voice, signature, 
gestures, keyboard typing pattern, and other traits that can be 
extracted from user actions. Human gait, defined as a personal 
manner of walking, is also a behavioral identifier because it is 
determined by an individual’s intrinsic factors (e.g., sex, age, 
etc.), physical factors (e.g., weight, height, limb length, 
physique, etc.), psychological factors (e.g., personality type, 
etc.), and pathological factors (e.g., musculoskeletal anomalies, 
neurological diseases, psychiatric disorders, etc.) [1]. The 
most popular biometric identifiers are fingerprint, face, and iris, 
which require close access to the scanners and active 
cooperation from the users during the recognition procedure. 
Whereas gait can be unobtrusively monitored from a distance 
without requiring explicit involvement and physical restraint 
from the users. Hence gait has been strongly supported as a 
useful biometric identifier [2, 3].  

Most researches on gait-based personal identification were 
performed by recognizing human gait in images or videos 
recorded with cameras [2, 4-11]. However, the vision-based 
gait recognition was challenged by imperfect foreground 
segmentation of the walker from the background scene, 
variations in the camera viewing angle, alterations in clothing 
and in carrying condition of the walker, changes in 
illumination, ambient occlusion, clutter, and other perceptual 
distortions [5, 12]. Also, using camera equipment signifies the 
vision-based approach is only suitable for fixed locations. 
With the recent development of microelectromechanical 
systems, collecting kinematic data of body movements using 
inertial sensors has become widely applied in gait studies 
owing to many positive features of inertial sensors such as 
small size, light in weight, portability, easiness to use, low cost, 
and low power consumption. Our previous study, which 
achieved multiple classification of gait by analyzing the lower 
body six-degree‐of‐freedom (6-DOF) motions measured with 
wearable inertial measurement units (IMUs), suggested 
promising potential of kinematic gait data as reliable biometric 
identifiers [1]. Several previous studies, which developed 
ambulatory gait monitoring systems using inertial sensors 
embedded in footwear or accessory and using a smartphone, 
suggested promising real-world applicability of kinematic gait 
data as practical biometric identifiers [13, 14].  

The aim of this study was to propose an approach to using 
kinematic gait data collected with wearable IMUs for reliable 
personal identification. To achieve this aim, a time-frequency 
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analysis was employed for effective representation of 
kinematic gait data. The gait representations were used to train 
the deep convolutional neural network (DCNN)-based 
classifiers. This study is expected to be utilized for unobtrusive 
personal identification in AmI environments. By confirming 
the feasibility of the proposed analytic approach in identifying 
personal behavioral characteristics, this study can give 
inspiration not only to gait-based biometrics but also to other 
behavior-based biometric technologies.   

II. MATERIALS AND METHODS 

A. Participants 
A total of 69 individuals able to ambulate at least 20 meters 

without any walking aids or assistance from other people 
participated in this study. The participants ranged in age from 
24 to 62 years with the mean of 38.77 years. The height and 
weight (mean ± SD) of the participants were 173.27 ± 6.10 cm 
and 70.91 ± 7.76 kg, respectively. All participants provided 
written informed consent before their participation. This study 
was approved by the Institutional Review Board of Korea 
Institute of Science and Technology. 

B. Experimental protocol 
The 3-axis acceleration and the 3-axis angular velocity 

signals were measured using seven commercialized wearable 
IMUs (Xsens MVN, Enschede, Overijssel, Netherland) at a 
sampling frequency of 100 Hz. Each IMU was 47 mm long, 
30 mm wide, and 13 mm height with a weight of 16 g. Fig. 1(a) 
shows the x-, y-, and z-axis of the IMU, and Fig. 1(b) depicts 
the locations of the IMUs: on both feet (middle of the bridge 
of foot), on both shanks (medial surface of the tibia), on both 
thighs (the lateral side above the knee), and on posterior pelvis 
(flat on the sacrum) [1, 15]. Each participant was instructed to 
walk three times, each at slow, preferred, and fast speeds, on 
the 20-meter straight and flat path. The participants were 
requested to walk 15% to 25% slower and faster than their 
preferred speed for their slow and fast speeds. 

C. Gait assessment 

Gait cycle detection 
The measured acceleration and angular velocity signals 

were band-pass filtered between 0.1 and 15 Hz and then 
upsampled to 1000 Hz using spline interpolation. These 
signals were normalized for data scaling into the range [-1, 1] 
to minimize the effect of proximal-distal displacement of 

IMUs. Using the heel-strike (HS) and toe-off (TO) times of 
both lower limbs acquired from the angular velocity signals 
measured at both feet and both shanks, the following gait 
parameters were calculated: stance time (time elapsed from a 
HS to a TO of the same foot), swing time (time elapsed from 
a TO to a HS of the same foot), double limb support (DLS) 
time (amount of time spent with both feet contacting the 
ground), single limb support (SLS) time (amount of time spent 
with only one foot contacting the ground), step time (time 
elapsed between a HS and a consecutive HS of the opposite 
foot), stride time (time elapsed between a HS and a 
consecutive HS of the same foot), step length (distance 
between a HS and a consecutive HS of the opposite foot), 
stride length (distance between a HS and a consecutive HS of 
the same foot), and gait velocity (value calculated by dividing 
a stride length into a corresponding stride time) [16-19]. The 
stride and step lengths were normalized with the height of each 
participant. Each participant’s five strides observed in the 
middle of the walkway were extracted for each of the slow-, 
preferred-, and fast-speed walking trials. The acceleration and 
angular velocity signals measured in each stride at the both feet, 
both shanks, both thighs, and posterior pelvis were used in the 
analysis. 

Gait representation 
Continuous wavelet transform (CWT) was employed to 

represent the lower body movements with information on 
frequency and power that vary with time. CWT is defined as 
follows: 

CWT{𝑥𝑥(𝑡𝑡)} = 𝑋𝑋(𝑎𝑎, 𝑏𝑏) = 1
√𝑎𝑎
∫ 𝑥𝑥(𝑡𝑡)𝜓𝜓∗ �𝑡𝑡−𝑏𝑏

𝑎𝑎
�∞

−∞ 𝑒𝑒−𝑗𝑗𝑗𝑗𝑗𝑗𝑑𝑑𝑑𝑑 (1) 

where 𝑥𝑥(𝑡𝑡) and 𝜓𝜓(𝑡𝑡) denote signals to be transformed and 
a mother wavelet, such as Morlet, Daubechies, and Meyer 
wavelets, respectively. a, b, and * indicate scale of wavelet 
transform, time shift, and complex conjugation, respectively 
[20]. The magnitude squared of CWT yields a spectrogram of 
the following function: 

spectrogram{𝑥𝑥(𝑡𝑡)} = |𝑋𝑋(𝑎𝑎, 𝑏𝑏)|2         (2) 

In this study, each of the acceleration and angular velocity 
signals was multiplied by the Morlet wavelet, and the 
magnitude squared of the transformed signals was regarded as 
a gait spectrogram. Fig. 2(a) shows the y-axis foot acceleration 
signals measured in a preferred-speed stride of one participant 
[15]. Fig. 2(b) displays the spectrogram obtained by applying 
CWT to the signals in Fig. 2(a). The orange and yellow areas 
in Fig. 2(b) denote higher energies of the specific frequency 
components compared to other components [15].  

By depicting the lower body movements in 15 strides of 
each of the 69 participants with 3-axis acceleration and 3-axis 
angular velocity signals measured at seven locations, a total of 
43,470 spectrograms were acquired.  

Statistical analysis 
One-way analysis of variance (ANOVA) was performed 

using SPSS statistics software (v.25.0, SPSS Inc., Chicago, 
Illinois, USA) to investigate the significance of differences in 
gait parameter values depending on walking speed.  

 
Figure 1. (a) Three axes of the inertial measurement unit (IMU) and (b) seven 
locations of the IMUs. 
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D. Classifier training and evaluation 
Each input image set of the DCNN-based classifiers was 

designated as SPX, which denoted the set of spectrograms 
obtained from the signals measured at X that was feet (F), 
shanks (S), thighs (T), posterior pelvis (P), feet and posterior 
pelvis (FP), or feet, shanks, thighs, and posterior pelvis (FSTP). 
The spectrogram set of each lower body segment was 
produced according to the following steps. First, each of the 
six spectrograms of the 3-axis acceleration signals and the 3-
axis angular velocity signals was resized to 768 × 384 × 3 
(3-channel RGB image). Second, the resized spectrogram of 
x-axis acceleration signals was piled upon that of x-axis 
angular velocity signals, which provided the new image with 
a size of 768 × 768 × 3. By applying the second step to each 
spectrogram of y- and z-axis signals, two more new images 
each with a size of 768 × 768 × 3 were obtained. Third, 
three new images were stacked back in the order of x-, y-, and 
z-axis. These steps were used to produce the left foot, the right 
foot, the left shank, the right shank, the left thigh, the right 
thigh, and the pelvic spectrogram sets each with a size of 768 
× 768 × 9. Whereas the size of SPP was identical with the 
size of the pelvic spectrogram set, the sizes of SPF, SPS, and 
SPT were 768 ×  768 ×  18 because each of them was 
acquired by stacking the right side spectrogram set behind the 
left side spectrogram set. The combination of SPF and SPP 
corresponded to SPFP with a size of 768 × 768 × 27. Fig. 3 
depicts SPFSTP with a size of 768 × 768 × 63, which was 
obtained by stacking SPF, SPS, SPT, and SPP. 

Each of the ResNet18-, ResNet50-, and DenseNet121-
based classifiers was used for the personal identification. The 
classifiers were trained using adaptive moment estimation 
(Adam) optimizer with a batch size of 16 and a learning rate 
of 0.0001. A dropout probability of 0.6 was applied in the last 
layer. Regarding the learning rate schedule, the learning rate 
was reduced on a plateau of validation set accuracy with a 
factor of 0.5 and a patience of two epochs. The training process 
was early stopped when the accuracy for the validation set was 

not improved within seven epochs. Among each participant's 
15 strides, 12 strides were used in the 4-fold cross validation 
of the classifiers, and the remaining three strides were used to 
evaluate the classifiers. The personal identification 
performance was multi-evaluated with consideration for the 
three different classifiers and the six different input image sets. 

III. RESULTS 

A. Gait parameters 
Table I summarizes the gait parameter values of all 

participants depending on walking speed. The mean and SD 
values of the gait velocities were 1.09 ± 0.22 m/s, 1.43 ± 0.18 
m/s, and 1.81 ± 0.25 m/s in the slow-, the preferred-, and the 
fast-speed walking trials, respectively, and the one-way 
ANOVA with Dunnett's T3 post-hoc test revealed the 
significant differences among these values (P < 0.001). The 
significance of differences in the other gait parameters 
depending on walking speed were observed from the one-way 
ANOVA with Tukey's post-hoc test (equal variance) or with 
Dunnett's T3 post-hoc test (unequal variance) (all P < 0.05).  

B. Identification performance 
Fig. 4(a) and 4(b) show the top-1 and the top-3 accuracies, 

respectively, resulted by using SPF, SPS, SPT, or SPP as an 
input image set of the three classifiers for the personal 

 
Figure 3. Configuration of the spectrograms to use as an input image set 

of deep convolutional neural network models. 
 

TABLE I.  GAIT PARAMETERS OF THE STUDY PARTICIPANTS 

Gait 
parameter 

Walking speed 
Slow Preferred Fast 

Gait velocity (m/s) 1.09 ± 0.22  1.43 ± 0.18* 1.81 ± 0.25*† 
Stance time (s) 0.79 ± 0.16 0.65 ± 0.10* 0.57 ± 0.07*† 
Swing time (s) 0.60 ± 0.11 0.52 ± 0.09* 0.49 ± 0.07*† 
DLSa time (s) 0.11 ± 0.05 0.08 ± 0.04* 0.06 ± 0.04*† 
SLSb time (s) 0.60 ± 0.11 0.52 ± 0.08* 0.49 ± 0.07*† 
Step time (s) 0.70 ± 0.13 0.59 ± 0.09* 0.53 ± 0.07*† 
Stride time (s) 1.39 ± 0.25 1.17 ± 0.17* 1.05 ± 0.13*† 
Step length (m) 0.39 ± 0.05 0.44 ± 0.04* 0.50 ± 0.05*† 
Stride length (m) 0.78 ± 0.08 0.87 ± 0.07* 0.99 ± 0.09*† 

a. Double limb support; b. Single limb support. 
Data are presented as the mean ± SD. 

*P < 0.05 in comparison to the slow speed; †P < 0.05 in comparison to the preferred speed. 

 
Figure 2. (a) Acceleration signals in y-axis measured at the foot in a 

preferred-speed stride and (b) a spectrogram obtained by applying continuous 
wavelet transform to the signals in (a). 
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identification. The highest value among the top-1 accuracies 
in Fig. 4(a) was 96.89%, and that among the top-3 accuracies 
in Fig. 4(b) was 99.07%. Both of these values were obtained 
from the ResNet50-based classifier trained with SPF.  

The top-1 and the top-3 accuracies, the results of using 
SPFP or SPFSTP as an input image set of the three classifiers, 
were displayed in Fig. 5(a) and 5(b), respectively. The greatest 
top-1 accuracy in the personal identification using SPFP was 
99.07% obtained by the ResNet18-based classifier. The use of 
SPFSTP resulted in top-1 accuracies of 99.38% for the 
ResNet18-based classifier, 99.69% for the ResNet50-based 
classifier, and 99.07% for the DenseNet121-based classifier. 
Top-3 accuracies of 100% were provided from the ResNet50-
based classifiers trained with SPFP or SPFSTP. 

Table II summaries the personal identification 
performance of each input image set with the mean and SD 
values of the top-1 and the top-3 accuracies resulted by using 
the three different classifiers. 

IV. DISCUSSION 

This study proposed the approach to using gait 
spectrograms and DCNNs for reliable personal identification. 
The spectrographic analysis on the three translations and the 
three rotations of each lower body segment in one stride was 
effective to represent kinematic features of gait. The foot, 
shank, thigh, and pelvic spectrograms trained with the 
ResNet50-based classifier exhibited the outstanding 
performance, 99.69% accuracy, in identifying the 69 
individuals regardless of walking speed. Johnston et al. 

obtained up to 79.2% accuracy in the gait-based personal 
identification using the time-series features of the acceleration 
and the angular velocity signals measured for 10 seconds with 
a smartwatch from the 36 subjects [21]. Derawi et al. 
recognized gait by applying a cross dynamic time warping 
metric to the acceleration data collected with a smartphone 
while walking 30 meters and identified the 25 subjects with 
89.3% accuracy [22]. By extracting six time-series features 
from the accelerometer data collected with a cell phone in 
one’s pocket during 10-second walking, Kwapisz et al. 
acquired a personal identification accuracy of 90.9% for the 36 
subjects [23]. Pan et al. recognized the gait pattern with the 
signature points extracted from the acceleration signals 
measured for 10 seconds using the accelerometers attached to 
the wrist, upper arm, waist, thigh, and ankle. They achieved up 
to 96.7% identification accuracy for the 30 subjects [24]. 
Compared to the abovementioned studies, this study achieved 

 
Figure 4. (a) Top-1 accuracies and (b) top-3 accuracies in the personal 

identification using the three different deep convolutional neural network-
based classifiers trained with the foot spectrograms (SPF), the shank 
spectrograms (SPS), the thigh spectrograms (SPT), or the pelvic spectrograms 
(SPP). 
 

 
Figure 5. (a) Top-1 accuracies and (b) top-3 accuracies in the personal 

identification using the three different deep convolutional neural network-
based classifiers trained with the foot and pelvic spectrograms (SPFP) or the 
foot, shank, thigh, and pelvic spectrograms (SPFSTP). 
 

TABLE II.  PERSONAL IDENTIFICATION PERFORMANCE 

Classifier input Top-1 accuracy (%) Top-3 accuracy (%) 
SPF

a 92.91 ± 3.69 97.67 ± 1.24 
SPS

b 83.75 ± 1.00 91.92 ± 0.82 
SPT

c 83.65 ± 3.42 92.60 ± 1.01 
SPP

d 83.85 ± 0.62 92.45 ± 0.47 
SPFP

e 97.21 ± 2.71 99.07 ± 1.35 
SPFSTP

f 99.38 ± 0.31 99.59 ± 0.36 
a. Foot spectrograms; b. Shank spectrograms; c. Thigh spectrograms; d. Pelvic spectrograms; 

e. Foot and pelvic spectrograms; f. Foot, shank, thigh, and pelvic spectrograms. 

Data are presented as the mean ± SD. 
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more accurate identification for more individuals with less 
cumbersome feature extraction process. In other words, 
representing the kinematic gait data as spectrograms was 
helpful to reduce a lot of manual labor, time-consuming and 
resource-intensive processes, and empirical knowledge for 
feature engineering. It is also noteworthy that this study only 
used the information on one stride observed for about one 
second in a space of about one-meter long. 

As shown in Fig. 4, using the foot spectrograms was more 
effective than using the shank, the thigh, or the pelvic 
spectrograms in the personal identification. This result would 
be related to the anatomical structure of the lower body. As the 
most distal part of the lower body, the foot is the part where 6-
DOF motions at the ankle, dorsi-/plantar-flexion, 
abduction/adduction, and inversion/eversion, can be faithfully 
observed [25]. Therefore, the various gait characteristics could 
be included in the foot movements, and thus the foot 
spectrogram set could be an effective personal identifier. By 
combining the foot spectrograms with the pelvic spectrograms, 
the identification performance was improved because the 
pelvic movements could also contain various gait 
characteristics related to the pelvic rotation, obliquity, and tilt 
which were known as primary determinants of human 
locomotion [26]. On the other hand, the shank movements 
were affected by the knee motions with constraints on 
abduction/adduction and internal/external rotation in the gait 
cycle. This restriction was also observed in the hip motion, 
which affected the thigh movements, during walking [25]. 
Hence the shank and the thigh spectrograms would have 
limitations in exhibiting various gait characteristics and 
consequently were less effective as personal identifiers. With 
gait involving chain activities of the different lower body 
segments, using the foot, shank, thigh, and pelvic 
spectrograms altogether could provide the best performance in 
the personal identification. 

In terms of real-world applicability and usability, it is 
notable that the proposed approach achieved up to 96.89% 
accuracy in personal identification only with the foot 
spectrograms obtained in one stride regardless of walking 
speed. The performance of the foot and pelvic spectrograms 
reported as an accuracy of up to 99.07% is also noteworthy. A 
promising user acceptance of the proposed approach can be 
expected because foot and pelvic movements can be readily 
and easily monitored with wearable sensors such as footwear- 
and belt-attached IMUs. The high user acceptance of a foot 
bracelet sensor and that of a lower back sensor were verified 
by Giansanti et al. and by Zhong et al., respectively [27, 28]. 
Hence the proposed approach has the potential to be utilized 
in smart residential and care facilities for providing 
customized AmI services to each occupant. This study is 
expected to give inspiration not only to gait-based biometrics 
but also to other behavior-based biometric technologies by 
confirming the feasibility of the proposed analytic approach in 
identifying personal behavioral characteristics. 

This study has some limitations related to generalizability. 
Applying the proposed approach to larger groups with diverse 
demographic, anthropometric, and pathological characteristics 
needs to be carried out along with lower body movement 
signal acquisition using readily available devices such as an 
accelerometer- and gyroscope-equipped smartphone. 

Confirming within-day and day-to-day reproducibility of the 
proposed approach is also required. Further studies will be 
conducted for improving the proposed approach to be less 
sensitive to inertial sensor orientation by calibrating the 
acceleration and angular velocity signals. Feasibility of 
biometric authentication using the gait spectrograms will be 
assessed in future work to extend the utilization of this study 
in secure systems and forensic science. 

V. CONCLUSION 

This study proposed the approach that enabled reliable 
personal identification using the gait spectrograms and 
DCNNs. The 3-axis acceleration and the 3-axis angular 
velocity signals measured at the feet, shanks, thighs, and 
posterior pelvis in one stride were represented as gait 
spectrograms. The DCNN models trained with the gait 
spectrograms exhibited outstanding performance in 
identifying the individuals regardless of walking speed. This 
study pioneered the utilization of kinematic and 
spectrographic approaches to identify personal behavioral 
characteristics, which has great potential to improve behavior-
based biometric technologies. 
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