
  

  

Abstract— The recent development of novel multi-electrode 

recording technologies has revealed the existence of traveling 

patterns of cortical activity in many species and under different 

states of awareness. Among these, slow activation waves 

occurring under sleep and anesthesia have been widely 

investigated as they provide unique insights into network 

features such as excitability, connectivity, structure, and 

dynamics of the cerebral cortex. Such characterization is usually 

based on clustering methods which are constrained by a priori 

assumptions as to the number of clusters to be used or rely on 

wave-by-wave pattern reconstruction. Here, we introduce a new 

computational tool based on modal analysis of fluid flows which 

is robustly applied to multivariate electrophysiological data 

from cortical networks, namely the Energy-based Hierarchical 

Waves Clustering method (EHWC). EHWC is composed of 

three main steps: (1) detecting the occurrence of global waves; 

(2) reducing the data dimensionality via singular value 

decomposition; (3) clustering hierarchically the singled-out 

waves. The analysis does not require the single-channel 

contribution to the waves, which is a typical bottleneck in this 

kind of analysis due to the unavoidable intrinsic variability of 

locally recorded activity. For testing and validation, here we 

used in vivo extracellular recordings from mice cortex under 

three different levels of anesthesia. As a result, we found slow 

waves with an increasing number of propagation modes as the 

anesthesia level decreases, giving an estimate of the increasing 

complexity of network dynamics. This and other wave’s features 

replicate and extend the findings from previous literature, 

paving the way to extend the same approach to non-invasive 

electrophysiological recordings like EEG and fMRI used 

clinically for the characterization of brain dynamics and clinical 

stratification in brain lesions. 

 

Clinical Relevance— The properties of cortical waves are highly 

informative about brain states. The quantification and 

classification of brain states are clinically relevant to the 

diagnosis of consciousness disorders. Further, abnormal waves 

have also been described in perilesional tissue. A new method is 

introduced to cluster similar cortical spatiotemporal patterns 

like slow waves in electrophysiological and simulated 

multichannel data under different brain states. This is a novel 

method that requires no channel-by-channel detection or a 

priori assumptions on the number of clusters to be used. The 

method has the potential to be exploited in non-invasive 

recordings like EEG and fMRI. 
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I. INTRODUCTION 

The spatiotemporal patterns of brain activity spontaneously 

generated by the cerebral cortex represent an important 

hallmark of neural computation and information transfer. 

The use of multichannel recording technologies has recently 

revealed traveling patterns of neuronal activity; that is, 

cortical waves, occurring across many species [1]–[3], and 

under different states of awareness [4]–[6]. Also, traveling 

waves are strongly shaped by the brain state and by neural 

activity; in turn, while propagating across the cortical 

networks, they transiently modulate neural excitability and 

responsiveness over a wide range of spatial and temporal 

scales [7]. Across single areas or distant regions, the cortical 

oscillations travel as synchronous events characterized by 

non-zero phase offsets changing from time to time. Phase 

latencies identify spatiotemporal patterns like planar, radial, 

and spiral waves, or even more complex motifs generated by 

the interaction and combination of multiple traveling waves 

[7]. Previous works have shown that the study of the 

spatiotemporal patterns of activity of the cerebral cortex may 

provide important information about the underlying 

networks in terms of excitability, connectivity, structure, and 

dynamics [4], [8], [9]. Many methods exist to classify 

cortical spatiotemporal patterns of activity based on 

clustering methods [10], [11]. Here, we aim to provide a new 

computational tool based on modal analysis of fluid flows 

for the grouping of similar spatiotemporal patterns in 

electrophysiological cortical data, what we call the Energy-

based Hierarchical Waves Clustering method (EHWC). 

Here, we applied this method to global brain states 

dominated by slow wave activity (SWA) in cortex, where 

slow oscillations (SO) between active (Up) and silent 

(Down) periods occur at approximately 1 Hz. SO 

spontaneously emerge in cortical networks both when they 

are anatomically disconnected (i.e. in vitro) [2], [12], as well 

as when they are functionally disconnected (i.e. in vivo) 

under physiological or pharmacological unconscious states 

[11], [13], [14] or in pathological conditions [6], [15], [16]. 

It has been demonstrated that the SOs are traveling waves 

that periodically sweep the cerebral cortex and originate 

from specific cortical areas [4], providing an ideal test bed 

for our method. So, in this work we apply the EHWC method 

 

M. Mattia is with the Natl. Center for Radioprotection and 
Computational Physics, Istituto Superiore di Sanità (ISS), Rome, Italy. 

M.V. Sanchez-Vives is with the Institut d’Investigacions Biomèdiques 

August Pi i Sunyer (IDIBAPS), Barcelona, Spain, and ICREA, Barcelona, 
Spain.  

 

*ALESSANDRA CAMASSA, Maurizio Mattia, and Maria V. Sanchez-Vives 

ENERGY-BASED HIERARCHICAL CLUSTERING OF 

CORTICAL SLOW WAVES IN MULTI-ELECTRODE 

RECORDINGS 

2021 43rd Annual International Conference of the
IEEE Engineering in Medicine & Biology Society (EMBC)
Oct 31 - Nov 4, 2021. Virtual Conference

978-1-7281-1178-0/21/$31.00 ©2021 IEEE 198



  

for the clustering of cortical traveling waves in vivo under 

three different levels of anesthesia [17].Our results strongly 

agree with previous studies performed on the same data set 

[11], validating our method and providing a novel analytical 

tool for clustering similar cortical spatiotemporal patterns, 

and overcoming some of the limitations of former works in 

the field. 

  

II. METHODS 

A. Experimental methods 

For the purpose of this study, we recorded extracellular local 

field potential (LFP) from one hemisphere of anesthetized mice 

(N = 8) via a 32-channel multi-electrode array [18] placed on 

the cortical surface (Fig. 1A). Anesthesia was induced by 

intraperitoneal injection of ketamine and medetomidine and 

maintained by the inhalation of isoflurane in pure oxygen 

(details in [11]. Each animal went through a modulation of 

anesthesia obtained by varying isoflurane concentrations 

resulting in three different levels: Deep = 1.16 ± 0.08 % (mean 

± s.e.m.), Medium = 0.34 ± 0.06 % and Light = 0.1 ± 0%. Each 

anesthesia level was maintained for 20–30 minutes and 

recordings consistently showed a stable slow oscillatory regime 

(Fig. 1B). All procedures were approved by the Ethics 

Committee at the Hospital Clinic of Barcelona and were carried 

out to the standards laid down in Spanish regulatory laws (BOE 

34/11370-421, 2013) and in the European Union directive 

2010/63/EU. 

B. Signal processing  

We extracted the multiunit activity (MUA) from the recorded 

LFP as in [19], [20]. Briefly, the MUA was estimated, 

independently for each channel, as the relative change of the 

power in the [0.2, 1.5] kHz frequency band of the raw signal, 

and down-sampled at 200Hz. The lower bound at 0.2 kHz in the 

recorded unfiltered field potential is sufficient to exclude all the 

possible contribution from high-frequency LFP fast oscillations 

observed in cortex. MUA were eventually low-pass filtered by 

averaging on a moving window of 80 ms. 

C. Dimensionality reduction 

We performed a standard singular value decomposition 

(SVD) [21] on the multivariate MUA time series 𝐹: 

𝐹 = 𝑈Σ𝑉𝑇 (1) 

where 𝐹 is a 𝑚 × 𝑛 matrix composed of the 𝑚 MUA samples 

measured from the 𝑛 = 32 recording electrodes. 𝑈 is the 

𝑚 × 𝑚 matrix of columnar orthogonal temporal bases (𝑢𝑖), 

𝑉 is the 𝑛 × 𝑛 matrix of columnar orthogonal spatial bases 

(𝑣𝑖), while Σ is the diagonal matrix of singular values (𝜎𝑖), 

and 𝑉𝑇 indicates the transpose of 𝑉. In the analyzed data the 

first three components explained on average 92% of the 

variance (Fig. 1C-D). We then reduced the dimensionality of 

our problem taking into account only the projections on the 

temporal eigenmodes 𝑢𝑖 associated to the first three 𝜎𝑖 (𝑖 ∈
{1,2,3}). 

D. Wave activations as low-dimensional trajectories  

According to [22], each i
2 is proportional to the energy Δ𝐸𝑗𝑖 

of the spatial eigenmode 𝑣𝑖 at time 𝑗 

Δ𝐸𝑗𝑖 = (𝐹𝑇𝑣𝑖)𝑗
2 = 𝜎𝑖

2𝑢𝑗𝑖
2   (2) 

with 𝑖 = 1, … , 𝑛, such that the energy fraction incorporated 

by the first 𝑚 modes at the time step 𝑗 is 

𝐸𝑗𝑚 =  
∑ 𝜎𝑖

2𝑢𝑗𝑖
2𝑚

𝑖=1

∑ 𝜎𝑖
2𝑢𝑗𝑖

2𝑛
𝑖=1  

 𝑚 < 𝑛 (3) 

An example of this instantaneous energy from an example 

recording for each 𝑚 is shown in Fig. 2A, top panel. Setting 

a suited threshold on the MUA averaged across channels 

(i.e., the multi-electrode activity MUA, MEAMUA), we 

detected the onset time of traveling activation waves 

resulting from the coordinated Down-to-Up transitions in 

single channels (Fig. 2A, bottom panel). The time windows 

of 0.25 s centered around these onset times constitute 

snapshots of the spatiotemporal patterns associated with each 

single wave which is a chunk of 𝐹. From these chunks we 

singled out the points (Δ𝐸𝑗1 , Δ𝐸𝑗2, Δ𝐸𝑗3) in the three-

dimensional space defined by the first three spatial 

eigenmodes. These points developed in time as low-

dimensional trajectories (Fig. 3A). Example trajectories 

from the chunks associated with different wave activations 

(i.e., Down-to-Up transitions) are depicted in Fig. 3C. As a 

result, each wave is represented by a vector with 3𝑘 elements 

Fig. 1 Experimental setup and dimensionality reduction. A, schematic 
representation of the in vivo recording with a 32ch-MEA (multi-electrode 

array) placed on top of the cortical surface of one hemisphere in mice. B, 

Traces representing the local field potential (LFP) recorded from one 
electrode in vivo at Deep, Medium and Light (blue, pink and orange trace, 

respectively) anesthesia level (adapted from Dasilva et al. 2021). C, 

percentage of total data variance explained by each singular value in one 

example case under Medium anesthesia. D, energy related to each singular 

value in the same example case shown in C. 
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corresponding to the three coordinates for each of the 𝑘 

points of the chunk (where here 𝑘 = 0.25 ∗ 200 = 50).  

In general, the number of spatial eigenmodes (NEig) on 

which we project the MEA activity corresponding to a wave 

may vary across experiments and is determined as follows:  

𝑁𝐸𝑖𝑔 = 〈𝑚𝑖𝑛{𝑚|𝐸(𝑡𝑢𝑝)𝑚 ≥ 0.9}〉 (4) 

That is the number of spatial eigenmodes required to account 

for 90% of the energy of the data over time, averaged in the 

time periods corresponding to the Up states (𝑡𝑢𝑝; Fig. 2A, 

middle panel) [22]. 

E. Hierarchical clustering analysis 

From the set of vectors/trajectories we eventually computed the 

pairwise Euclidean distance determining a square Distance 

Matrix (DM). For each experiment and anesthesia level, we 

performed a Hierarchical Clustering Analysis (HCA) [23] on 

the DM using the Ward variance minimization algorithm [24], 

and applied a suited distance cut-off to obtain the number of 

clusters in our data. Here, we applied the same cut-off distance 

equal to 25 [a.u.] to all the data. To visualize the DM in form of 

a tree, we used truncated dendrograms (Fig. 3A–C), and then 

sorted the DM according to the leaves of the dendrogram, 

obtaining what we call the Ordered Distance Matrix (ODM, 

Fig. 3D–F). 

F. Dynamical richness estimation 

In order to obtain an estimation of the dynamical richness of 

cortical activity under each different anesthesia level, we 

performed a measure of complexity based on the Shannon 

entropy [11] here computed on the distribution of the Euclidean 

distance between the vectors/trajectories associated to the 

detected waves contained in each DM. As a result, a value of 

complexity/entropy is obtained for each subject and each brain 

state (𝑛 = 8 × 3 = 24). 

III. RESULTS 

We presented here the EHWC analysis as a new 

unsupervised method allowing for (1) clustering of 

spatiotemporal patterns (slow waves) in electrophysiological 

multi-channel cortical data and (2) estimation of cortical 

complexity under different brain states. As shown in Fig. 3, 

here we were able to reduce the dimensionality of our 

problem and map the electrophysiological activity of the 

cerebral cortex into a low-dimensional embedding space. In 

particular, the first three singular values extracted by SVD 

(given in (1)) explained on average a percentage of the 

variance of the data equal to 90.8 ± 2.8% under Deep 

anesthesia, 92.5 ± 1.8% under Medium anesthesia, and 

93.6 ± 2.1% under Light anesthesia. The detected waves 

were consistent with those singled out in [11] relying on a 

different method. We extracted matrices of pairwise distance 

between waves, i.e. the distance matrix (DM), and used them 

to calculate both the number of clusters and to estimate under 

each condition the complexity/richness of the propagation 

modes of the spontaneous and quasi-periodic cortical 

activation. Using the EHWC, we found that the number of 

clustered modes of propagation increases as the anesthesia 

level decreases. In Fig. 4 we show, for one example subject, 

the dendrograms obtained under Deep (Fig. 4A), Medium 

(Fig. 4B) and Light (Fig. 4C) anesthesia. The dendrograms 

(Fig. 4A–C), and the corresponding ordered distance matrix 

(ODM, Fig. 4D–F) revealed the presence of two 

homogeneous clusters under Deep anesthesia, with a 

relatively small distance among waves within each cluster, 

that become larger and highly variable when we move 

towards lighter anesthesia states. These results were 

confirmed at the population level, where the average number 

of clusters under the three different levels of anesthesia was: 

Deep = 2.87 ± 0.83 (SD), Medium = 4.5 ± 1.2 and Light = 

9.12 ± 1.5, as shown in Fig. 4G. These results and their 

statistics did not change by taking different lengths of time 

Figure 2 Instantaneous energy of the cortical activity from the MEA and wave detection. Bottom panel shows the time course of the multiunit 
activity (MUA) extracted from each channel (gray traces) in one example recording, and the corresponding average, the MEAMUA (black trace, see 

methods section D). Red dashed line, threshold used to detect the cortical events, i.e. the Down-to-Up transitions (red dots). Middle panel, the number of 

eigenmodes required to account for the 90% of the energy of the data over time (NEig(t)). Highlighted intervals correspond to the Up states area in which 
we averaged the values to obtain the final NEig (see Methods section D). Top panel, sorted percentage of instantaneous energy for each eigenmode. 
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windows and different cut-off distances (not shown). 

Moreover, the Shannon entropy computed on the DM 

allowed us to quantify the complexity of the propagation 

modes of cortical waves spontaneously expressed under each 

anesthesia level, leading to find a significant increase of the 

entropy as anesthesia fades out (Fig. 4H). The presented 

results are highly consistent with those reported with 

methodologies requiring the reconstruction of individual 

waveforms [11], validating the current approach, while it 

allows unsupervised clustering of waves and estimation of 

their complexity.  

 

 

 

 
 

IV. DISCUSSION 

The precise determination of the brain state is a relevant 

problem in basic as well as in clinical neuroscience, where it 

is tightly linked to the stratification of levels of 

consciousness. Previous studies have shown the importance 

of understanding the dynamics of the cerebral cortex through 

the study of spatiotemporal patterns of activity that bring 

relevant information about the network state and its properties 

[4], [8], [9]. However, the existing methods still present 

limitations with regard to a priori assumptions on the number 

of clusters to be used and the need for wave-by-wave pattern 

reconstruction. Departing from the idea that the brain may be 

seen as a non-linear system outside of equilibrium [22], here 

we developed a novel analytical tool for the grouping of 

similar cortical spatiotemporal patterns based on the 

application of an empirical eigenfunction approach for 

dimensionality reduction. This allowed us to reconstruct the 

energy trajectories of cortical events such as planar, spiral, 

and complex waves, and classify them using a hierarchical 

clustering analysis (HCA). In addition to the estimation of a 

finite number of clusters of cortical motifs, the analysis 

performed here also provides insights into the dynamics of 

the network generating the activity. Indeed, the method 

revealed that in the transition from deep anesthesia towards 

wakefulness, a form of transition across brain states, the fade-

out of anesthesia leads to an increasing variability of the 

spatiotemporal patterns generated by the cortex and in general 

to an increase in cortical complexity, as shown by the entropy 

results. This represents the rich repertoire of spatiotemporal 

configurations that the cortical networks express when 

approaching wakefulness. Coherently with previous studies, 

our results support the idea that anesthesia fade-out translates 

into a complex re-organization of the coupling between 

distant brain regions, leading to increasingly richer and more 

diverse long-range connectivity and activity patterns [25]–

[27], representing what happens in the transition from 

synchronous towards asynchronous or alert states, e.g. 

recovery from disorders of consciousness. Regional brain 

areas can also present abnormal waves when in perilesional 

regions [28], preventing normal function. Our results strongly 

agree with previous literature [11] and, at the same time, 

present the advantage of relying on an unsupervised method, 

requiring no channel-by-channel detection or a priori 

assumptions regarding the number of clusters to be used. 

However, our method still requires the selection of the 

linkage strategy to be used to compute the dendrograms, and 

the choice of a distance threshold to be applied to them to 

obtain a finite number of clusters. A potential limitation of the 

Energy-based Hierarchical Waves Clustering method 

(EHWC) is that it requires the detection of the wave’s onset 

to reconstruct the single-wave trajectories, complicating its 

use in asynchronous states in which event detection is not 

straightforward. However, we speculate that the same 

technique may be successfully applied to any condition in 

which a stimulation or perturbation is used (e.g., clustering of 

cortical response to a stimulation), as is the case in the clinical 

use of transcranial magnetic stimulation for the diagnosis of 

disorders of consciousness [29]. The method presented here 

is also suitable to the analysis of simulated cortical data from 

multimodular networks of spiking neurons (not shown). We 

conclude that EHWC provides a robust novel method for 

cortical patterns clustering in electrophysiological and 

Figure 3 System trajectories in the energy space. A, energy trajectory 
of 250s of cortical activity in the three-dimensional space defined by the 

first three principal components from an example experiment. B, 

Trajectories in the three-dimensional energy space associated to six 
waves randomly sampled from the same example experiment. 
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simulated data characterized by synchronous activity, with 

the potential to be exploited in non-invasive recordings like 

EEG and fMRI used in clinical realms for the characterization 

of brain dynamics under different brain states such as those 

related to disorders of consciousness or brain lesions. 
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