
  

 

Abstract— Signs and symptoms of movement disorders can be 

remotely measured at home through sensor-based assessment of 

gait. However, sensor noise may impact the robustness of such 

assessments, in particular in a Bring-Your-Own-Device setting 

where the quality of sensors might vary. Here, we propose a 

framework to study the impact of inertial measurement unit 

noise on sensor-based gait features. This framework includes 

synthesizing realistic acceleration signals from the lower back 

during a gait cycle in OpenSim, estimating the magnitude of 

sensor noise from five smartphone models, perturbing the 

synthesized acceleration signal with the estimated noise in a 

Monte Carlo simulation, and computing gait features. In 

addition, we show that realistic levels of sensor noise have only a 

negligible impact on step power, a measure of gait. 

 

Clinical Relevance— Uncertainty propagation with 

synthesized yet realistic sensor data can be used to study the 

impact of sensor noise on calculated gait features. 
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I. INTRODUCTION 

Recent years have seen an increasing use of wearable 
sensors to assess functional ability, including gait [1–9]. Such 
assessments have the potential to provide a more objective and 
detailed picture of the disease state in people living with 
movement disorders than previously possible [9, 10]. A 
common approach for administering sensor-based 
assessments is to take advantage of the sensors embedded in 
consumer electronic devices such as smartphones [9]. 

In a Bring-Your-Own-Device (BYOD) setting, 
smartphone sensor-based assessments are administered 
directly on the patients’ own smartphone device [11]. Such 
BYOD solutions allow for the assessments to be administered 
remotely at home outside of a clinical trial setting. However, 
they pose their own challenges. Different smartphone models 
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Figure 1: Diagram depicting our uncertainty propagation approach. Realistic noise-free gait signals were synthesized and corrupted by noise of different 

levels. Noise levels were informed by measurements obtained from smartphone accelerometer experiments and chosen such that they cover levels well 
above and below what is observed. A Monte Carlo simulation was used to obtain distributions of step power values for each noise level. 
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use sensors with different specifications. Thus, the 
measurement noises originating from sensors such as 
accelerometers or gyroscopes may differ between models [12]. 

The influence of sensor noise on calculated gait features, 
i.e. step power, received limited attention in research. We aim 
to investigate the impact of acceleration sensor noise on 
calculated/estimated gait features using uncertainty 
propagation. First we obtained synthetic gait acceleration data 
using simulated inertial measurement unit (IMU) sensors [13]. 
The synthesized data was then corrupted with white noise of 
varying amplitude matching the noise characteristics obtained 
from commonly used smartphone models before calculating 
the gait features. 

II.  METHODS 

A. Synthesized realistic gait signals 

Fig. 1 summarizes our proposed framework to study the 
influence of sensor noise on calculated gait features. We built 
on the recently introduced method of synthesizing acceleration 
sensor data from biomechanical human models and accurate 
motion simulation [13]. More specifically, OpenSim version 
4.1 (Simbios, Simbios/ SimTK, CA, USA) [14] was used to 
simulate biomechanical models during walking. Synthesized 
accelerometer data was obtained from a 23 degree-of-freedom, 
lower-body-torso-head musculo-skeletal human model 
(Gait2354) [15]. This model includes motion capture data 
from a subject performing one gait cycle on a treadmill as well 
as configuration files to perform scaling and inverse 
kinematics. Scaling refers to adapting the dimensions of the 
model to match the subject whose motion was captured, and 
inverse kinematics refers to the estimation of joint angles at 

each time point by matching the model marker positions to the 
measured marker positions.  

B. Simulated sensor 

Next, the simulated sensor was defined as an OpenSim 
marker attached to the lower back to simulate a smartphone 
worn in a running pouch. Three additional markers were 
defined that together make up a three-dimensional axis system 
with the simulated sensor on the lower back at the origin. This 
allowed us to track the orientation of the simulated sensor and 
synthesize three-dimensional acceleration signals similar to a 
real three-axial rotating accelerometer.  

C. Derivation of acceleration from position time series 

A position time series was derived from the position 
trajectory of the simulated sensor at each point in time during 
the gait cycle and exported from OpenSim. The acceleration 
signal could in principle be obtained by computing the second 
derivative of this position time series. However, any 
uncertainty in the position of the simulated sensor would be 
amplified by the double differentiation, resulting in a noisy 
acceleration signal. To synthesize smooth signals, we thus 
applied a Kalman smoother to each of the three axes separately 
[16]. 

The state of the simulated sensor at each time point is 
described by a position, velocity and acceleration and can be 
written in vector notation:  

 𝑥 = [𝑥  �̇�  �̈�  ]𝑇  (1) 

State transitions from one point in time to the next are 
described by the transition matrix A: 

 
Figure 2. The Allan standard deviation plot for 5 seconds worth of acceleration data from 5 different phones. The slope of the lines are almost identical  
to the theoretical slope of -0.5 for white noise as indicated by the red dashed line. The vertical blue lines represent the 60 Hz (Synthesized gait data) and  

1 Hz (Allan standard deviation) frequencies. Note that towards larger time deltas the slopes of the Allan deviation plots deviate from -0.5 due to 

increasingly less available data. This is taken into account when we fitted linear regression lines by using weighted least squares where weights were 

proportional to the number of data points per time delta. 
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 𝐴 =  [1 ∆𝑡 0.5∆𝑡2;  0 1 ∆𝑡;  0 0 1 ]   (2) 
In this analysis, the sensor has constant acceleration, 

including random variations that result in the transition 
covariance vector: 

 𝑞 = [
∆𝑡3

6
  

∆𝑡2

2
  ∆𝑡  ]

𝑇

  (3) 

Hence, transitions are described by: 

 𝑥𝑡=1 = 𝐴𝑥𝑡=0 + 𝑞𝜎𝑞𝑇   (4) 
With σ the standard deviation of the model noise. The 

observation covariance is estimated using Expectation 
Maximization (EM). For σ we can take a fixed value because 
the amount of smoothing that is applied only depends on the 
ratio between observation and model noise which is assumed 
to be constant. The EM estimation and subsequent calculation 
of smoothed state vectors (including acceleration) was 
implemented using the Python package pykalman 
(https://github.com/pykalman/pykalman). A gravity constant 
of 9.81 m/s2 was added to the vertical axis before projecting 
the signals onto the axes of the local reference frame spanned 
by the three additional markers. Finally, the accelerometer 
signal was concatenated to obtain two minutes of data to 
resemble the accelerometer signal obtained from a 
smartphone-based Two-Minute Walk Test. To ensure smooth 
transitions between consecutive gait cycles, we first 
concatenated three cycles, applied the Kalman smoother, and 
subsequently used the middle one to create the two-minute 
long signal.   

D. Noise characterization from smartphone accelerometer 

data 

We collected acceleration data from five different 
stationary smartphones for a duration of five seconds. The data 
were collected as part of a study investigating sensor precision 
and accuracy for various controlled acceleration levels.   

Sensor measurements such as those obtained from 
accelerometers embedded in smartphones are perturbed by 
noise that can be modelled as a Gaussian white noise process 
[17]. To compare the noise levels of different smartphone 
models with different sampling frequencies, the estimated 
noise levels were scaled to the frequency used in the OpenSim 
simulation. This was achieved with the Allan standard 
deviation, which is a log-log plot of the sampling interval 
versus the measurement standard deviation as shown in Fig. 2 

[18]. More specifically: 𝜎 =
1

√∆𝑡
𝜎𝐴𝑙𝑙𝑎𝑛 with 𝜎𝐴𝑙𝑙𝑎𝑛  the 

standard deviation at 1 Hz, and σ and ∆t the standard deviation 
and sampling interval used in the simulation, respectively.  
𝜎𝐴𝑙𝑙𝑎𝑛  was derived by fitting a linear regression model with 
fixed slope of -0.5 through the Allan standard deviation plot. 
As can be seen in Fig. 2, the slope of the lines are around -0.5 
which indicates the noise can indeed be modeled as a Gaussian 
white noise process.  

E. Uncertainty propagation 

We used a Monte Carlo approach to evaluate the effect of 
different noise levels on step power, a characteristic defined as 
the integral of the squared and gravity-corrected acceleration 
magnitude signal per step, with unit m/s3. Step power was 
computed for each step detected by the algorithm of [19] and 
averaged across all steps. Other gait features could be 
investigated as well but in this paper we limited the illustration 
of our method to step power.  

In each repetition of the Monte Carlo simulation, Gaussian 
white noise was added to the concatenated and synthesized 
accelerometer signal. The resulting noisy accelerometer signal 
was then used to compute step power. One hundred repetitions 
were used for each of the seven noise levels (range: 0.001 to  
1 m/s2). 

 
Figure 3. Synthesized three-axial acceleration data without noise is shown in black. The colored data shows an example of noise with an amplitude of  

0.5 m/s2 added to the synthesized data. This example consists of eight concatenated gait cycles. 
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III. RESULTS 

A. Synthesized realistic gait signals 

Fig. 3 shows the synthesized acceleration signal obtained 
using OpenSim and the Kalman smoother approach for each 
of the three axes. The noisy signal obtained after applying 
Gaussian white noise is superimposed in blue, orange and 
green, respectively.  

B. Noise levels 

Table 1 shows the scaled sensor noise levels obtained with 
the Allan standard deviation approach. Both the Samsung J7 
and S7 had noise levels that were approximately twice as large 
as those measured for the tested iPhone models (iPhone SE, 
iPhone XS, iPhone 11).  

C. Noise simulation results 

Fig. 4 shows the step power results obtained from the 
simulation. The true, noiseless, value of step power is  
0.94 m/s3. It can be seen that noise affects the variance of step 
power and can also introduce a bias. The variance of step 
power is affected proportionally to the noise level as shown in 
Fig. 5A. However, up to a noise level of 0.1 m/s2 the bias is 
negligible (Fig. 5B). This bias can be explained by steps not 
being detected resulting in some detected step being twice as 
long as a single step and thus higher step power. 

IV. DISCUSSION 

In this work we illustrated how OpenSim and motion 
capture data can be used to study uncertainty propagation from 
sensor noise to gait features. Our proposed uncertainty 
propagation method, which is versatile and agnostic to data 
synthesis approaches, could be applied to different sensor 
modalities, i.e. gyroscopes. It can also be applied to movement 
domains other than gait.  

Uncertainty propagation is a viable method to investigate 
data quality of sensors that are embedded in smartphones. 
Previously we reported that patients living with Parkinson’s 
disease have significantly reduced step power compared with 
healthy controls, suggesting that this measure captures gait 
impairment [20]. Our analysis revealed that sensor noise is 
negligible when calculating step power with data derived from 
a smartphone during a Two-Minute Walk for normal gait. 
Whether step power for abnormal gait patterns in people with 
a movement disorder is impacted differently, and to what 
extent, would require further research. 

Acceleration data could also be exported from OpenSim 
directly. However, in contrast to velocity, which is derived 
from position by differentiation, acceleration in OpenSim is 
derived from calculated forces, moments and constraints, 
which are additional steps to be performed after inverse 
kinematic calculation. Since this OpenSim-derived 
acceleration signal is prone to artefacts, we computed the  

TABLE I.  THE ALLAN STANDARD DEVIATION IS DEFINED AS THE 

STANDARD DEVIATION OF THE NOISE AT 1 HZ. TO COMPARE NOISE LEVELS 

FROM THE PHONES WITH THOSE USED IN THE NOISE SIMULATION WE HAD TO 

TRANSLATE THEM TO THE SAME SAMPLING FREQUENCY AS USED IN THE 

SYNTHESIZED DATA. 

Model Allan 

SD 

SD for 

noise 

simulation 

SD 

measured 

accelero-

meter data 

Sampling 

frequency 

(Hz) 

iPhone SE 0.0005 0.0037 0.0045 100 

iPhone XS 0.0004 0.0031 0.0046 100 

iPhone 11 0.0005 0.0039 0.0040 100 

Samsung J7 0.0011 0.0086 0.0056 100 

Samsung S7 0.0008 0.0065 0.0098 500 

SD, standard deviation. 

 
Figure 4. Monte Carlo simulation of step power using different noise levels. Samsung and Apple phones have noise ranging between 0.0031 and  

0.0086 m/s2. 
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acceleration signal directly by differentiating the position time 
series twice.  

One limitation is that we ignored centrifugal and Euler 
forces that are in reality also measured by the accelerometer. 
Because the virtual sensor is located at the lower back we 
assume that the contributions of these two forces can be 
neglected since there is hardly any rotation of the sensor. 
However, when considering body locations with a large range 
of motion, e.g. the lower arm or foot, the modelling and 
investigation of rotational forces needs to be addressed. 

Another limitation is that we only estimated sensor noise 
from smartphones not undergoing motion. An area for further 
research would be to extend the present analysis to sensor 
noise estimated from acceleration data collected from 
smartphones worn during walking. This would also enable the 
comparison of the synthesized acceleration data generated in 
this study with real acceleration data. Finally, by collecting 
longer recordings than the five-second recordings used here, 
such future research would allow us to better estimate the noise 
properties of the sensors, including sensor drift.  

 

V. CONCLUSIONS 

We illustrated here a proof-of-concept framework for 
investigating the impact of sensor noise on calculated gait 
features such as step power and for addressing concerns 
regarding sensor quality in real-world settings. Using this 
framework, we show that sensor noise has only a negligible 
impact on the computation of step power. 
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