
Error perception classification in
Brain-Computer Interfaces using CNN

J. Rafael Correia1 J. Miguel Sanches1 and Luca Mainardi2

Abstract— Capturing the error perception of a human
interacting with a Brain-Computer Interface (BCI) is a key
piece in improving the accuracy of these systems and making
the interaction more seamless. Convolutional Neural Networks
(CNN) have recently been applied for this task rendering the
model free of feature-selection. We propose a new model with
shorter temporal input trying to approximate its usability to
that of a real-time BCI application. We evaluate and compare
our model with some other recent CNN models using the
Monitoring Error-Related Potential dataset, obtaining an
accuracy of 80% with a sensitivity and specificity of 76% and
85%, respectively. These results outperform previous models.
All models are made available online for reproduction and
peer review.

I. INTRODUCTION
BCIs are systems that make use of electrical activity from

the brain to decode the user’s intentionality and translate it
into a task on a computer or machine.

One of the classes of electrical activity used by BCIs is
the Event-related Potential (ERP) which is elicited as the
result of a motor, sensory or cognitive stimulus. Among these
events, the most commonly used in BCI systems are the P300
evoked potentials and Event-related Synchronization/De-
synchronization (ERD/ERS) [1]. More recently, Error-related
Potentials (ErrP) have been used to include the perception
of subjects on errors caused by the BCIs.

An ErrP originates from the anterior cingulate cortex and
is elicited as a response to error perception after a feedback
presentation [2]. It is characterized by a positive peak at
around 200ms followed by a large negative peak at 200-
250ms and another positive peak at around 320ms [1].

Recent research on ErrP aims at designing new methods
to detect this type of ERP. Such classification can improve
BCI systems in two ways. Firstly, the system can automati-
cally correct the erroneous action either by changing to the
remaining action (in a binary set of choices) or by choosing
the next most probable action intended by the user. Secondly,
the system can use the error to improve its own prediction
and perform better in a later instance of the same situation.

The current challenges in ErrP analysis include improv-
ing the detection accuracy, the generalization over different
subjects [1] and computation time for real-time applications.

In this paper, we propose a new Convolutional Neural
Network model with a reduced temporal input size and fewer

1Instituto Superior Técnico, Lisbon
jose.r.c.correia@tecnico.ulisboa.pt
jmrs@tecnico.ulisboa.pt

2Politecnico di Milano, Milan
luca.mainardi@polimi.it

layers compared to previous models and we test it using
the Monitoring Error-Related Potential dataset [3]. We also
discuss how generalization is not an issue in a personalized
context where BCIs are tailored to each individual and
propose future work to explore this idea.

II. BACKGROUND

Several models have been proposed over the years to
classify different ERPs using both classical and deep learning
approaches. Recently, focus has been given to the latter due
to their high accuracy and the fact that the model performs
both the feature extraction and classification tasks, meaning
that no a priori optimal feature search is needed. In this
work, we focus on some recent work that implements CNN
models and use them as a comparison to our proposed model.

In 2018, Torres et al. proposed a model called ConvNet
[2] which was tested on two different input formats: one
with only two EEG channels (FCz and Cz) and another with
all available 64 channels. The latter reported better accuracy
and is the one replicated here. It consists of a module
(containing a mixed spatio-temporal convolution, an ELU
activation function, and a max-pooling layer) repeated twice
and a single fully connected layer with two output nodes.
Before feeding the model with data, the input is randomly
cropped to a size of 125ms to ” reduces the probability of
identifying a false training local minima.”

Bellary et al. proposed, in 2019, a model using only two
electrodes (FCz and Cz) called ConvArch [1]. In the first
layer, a mixed spatio-temporal convolution without activation
functions is followed by batch normalization, and dropout
layers. Then, a module is repeated three times, each with a
temporal convolution, ReLU activation function, batch nor-
malization and dropout layers. In the end, a fully connected
layer is used with two output nodes.

In 2018, Luo et al. proposed a model called CNN-L [4]
where a major difference from the two previous models is
the use of a sequential convolution (temporal followed by
spatial) instead of a mixed one.

Due to space constraints, not all models are described here.
For a full review of the compared models consult the first
author’s Github page [5], where description and schematics
are shown for 7 different models.

III. METHODOLOGY

A. Dataset

The used dataset was created by Chavarriaga et al. [3]
and is publicly available at the BNCI Horizon 2020 project
website under the name Monitoring error-related potentials.

2021 43rd Annual International Conference of the
IEEE Engineering in Medicine & Biology Society (EMBC)
Oct 31 - Nov 4, 2021. Virtual Conference

978-1-7281-1178-0/21/$31.00 ©2021 IEEE 204

TABLE I
SUMMARY OF SOME ARCHITECTURAL ASPECTS FROM PREVIOUS

LITERATURE TO BE CONSIDERED WHEN DESIGNING NEW MODELS.
DASH (-) FOR NON-USED FEATURES AND QUESTION MARK (?) FOR

USED FEATURES BUT NON-DEFINED VALUES.

The signals are generated while the user is monitoring an
external device upon which no control is given. Each subject
has to monitor a green square cursor which can travel along
a horizontal line made up of 20 evenly spread positions.
On each trial, a target appears either at the left or at the
right of the cursor and the cursor moves in the direction of
the target. After reaching the target, the cursor stops, and
a new target comes up no further than 3 positions away
from the last target. The subjects are informed that the goal
of the cursor is to reach the target. To present erroneous
behavior to the subject, the cursor has a 20% probability
of moving away from the target, contrary to its determined
goal. The dataset includes 6 subjects (mean age 27.83 ± 2.23
years) who performed two sessions each separated by several
days. Each session contains 10 blocks (3 minutes each) with
approximately 50 trials per block.

Concerning the dataset split for the training and evaluation
of all the models, we simulated the real use of a BCI system,
where the model is trained and only later tested with new
data. Hence, the training is performed with the first session
of the dataset while both the validation and testing sets use
the second session. Balancing the dataset was achieved by
replicating trials from the under-represented class.

B. Pre-processing

The only pre-processing applied to the raw data before
being fed to the CNN model is a band-pass filter from 1
to 10Hz. The input EEG data is organized in a 64 × 307
matrix where the number of rows, C = 64, is the number of
EEG electrodes and the number of columns, N = 307, is the
number of time samples (the sampling frequency is 512Hz
and each epoch, starting from the feedback presentation, is
600ms, leading to N = 0.6× 512 ≈ 307).

The reason why all 64 channels are used and no electrode
selection is done is two-fold. Firstly, according to our ex-

periments, using all 64 channels consistently presented the
best accuracy when compared with approaches that pre-select
electrodes (two common electrodes for ErrP classification
are the FCz and Cz). Secondly, as both the spatial resolution
and the number of electrodes increases in EEG and ECoG
imaging techniques [6] it is imperative that we investigate the
best way to make deep learning models select or combine
the best channels possible rather than hand-choosing specific
electrodes which might lead to sub-optimal performance.

C. Proposed model
In this section, the proposed CNN model is detailed.
Firstly, we apply a batch normalization layer, using the

same strategy as Liu et al. [7], where the normalization is
applied directly to the raw data as it is reported to better
control the overfitting effects that takes place during training.

Then, two convolution layers are used. First, a temporal
one that extracts features directly from the normalized raw
input and then a spatial convolution that combines temporal
features from multiple electrodes. From all the previous mod-
els analyzed, only the CNN-L uses this same convolutional
ordering, while others use either the reverse order or a mixed
convolution. However, by performing the spatial convolution
before the temporal or even mixing them, no purely temporal
features are extracted because the temporal convolution is
performed over abstract data. By performing temporal convo-
lution before spatial convolution, we expect to better preserve
and extract the raw temporal features. Also concerning the
convolutions, previous models use unitary stride (the slide
size during convolution) with large kernels which yields large
amounts of overlap and repeating information. After testing
with different sizes, we decided to use a stride size equal to
the kernel size, which avoids overlap and largely decreases
the complexity of the model.

After each convolution, a batch normalization is performed
to center the data distribution before the ELU activation
function. Bellary et al. does not apply an activation function
after the first convolution [1] and this variation is also tested.

Finally, the fully connected (FC) stage is added. We
determine the adequate number of layers by empirically
testing with 1, 2, and 3 layers. Before each one of these FC
layers, a dropout layer is applied with a constant dropout
rate also to be tested with values of 0%, 20%, and 50%.

The output of the model is composed of a single node.
Although most previous models use two output nodes, it
suffices to use only one node together with a Binary Cross-
Entropy (BCI) loss function. This avoids redundancy and
decreases the number of trainable parameters in the fully
connected layer by half.

No pooling layer is used as the convolution stride used
already decreases the size of the data matrices significantly
and in this way no information is lost by downsampling data.

Figure 1 shows a schematic overview of the generic model
(upon which the referred variations can be tested).

D. Epoch window
An important consideration for using these models in real-

time applications is the temporal epoching window size of

205

Fig. 1. Generic architecture for the proposed models. Data matrix dimensions on top (number of maps inside square brackets), kernel dimensions inside
the rectangles. Variables refer to some of the aspects of the model to be tested. T is the kernel size of the temporal convolution. S1 and S2 refer to
dimensions of the data matrices which depend on T. Testing the use of a different number of FC layers is represented with the dotted data matrices.

the input. A larger input may allow the model to search
for more temporal features. However, if we consider the
application of an error perception classifier running in real-
time, then the temporal epoch window should be as short
as possible to decrease the delay between the feedback
presentation and the classification. Hence, a compromise
must be achieved that both maximizes the useful temporal
information and minimizes the lag-time during online set-
tings.

Most other models use around 1000ms or more of the
input. This means that, after the feedback presentation, the
model must wait 1 second before being fed with the EEG
signal for processing which is a considerable amount of time.

In this work, we try to decrease this lag by testing shorter
epoch windows. Maintaining 1000ms as the control input
size, we test windows of 600ms, 500ms, 400ms, 300ms
and 200ms. Although decreasing the input size produces
the desired effects of decreasing the lag time of the pro-
cessing pipeline, the performance of the model should not
be compromised. Therefore, the performance resulted from
each window size is compared in the next chapter.

E. Training

All models are codded using the PyTorch Lightning frame-
work [8] and trained with GPU acceleration (Tesla P100-
PCIE-16GB). The training parameters for the comparison
models were kept the same as in their original papers or
educatedly guessed when not presented, such as dropout rates
(20% rate used), optimizers (SGD used), or loss functions
(Cross-Entropy used). For ConvNet, we did not apply the
cropping technique to the input described by Torres et al. as
it kept the accuracy close to random.

For our model, we used a batch size of 128, a learning
rate of 10−3, and an SGD optimizer with momentum and
weight decay of 0.9 and 10−5, respectively. Early stopping
was implemented to reduce the necessary training time.

All the models and code necessary to reproduce the
experiments are present in the first author’s Github page [5].

IV. RESULTS AND DISCUSSION

All results reported are averaged over five training ses-
sions, each taking an average of 3 minutes to complete.

TABLE II
ACCURACY OF PROPOSED MODEL WHEN TRAINING WITH DIFFERENT

EPOCHED TEMPORAL WINDOWS (BEST VALUE PER METRIC IN BOLD)

ANOVA and t-tests are used for statistical analysis with
Bonferroni correction and α = 0.05.

The results for the temporal epoch window experiment are
present in Table II. It is clear that reducing the epoch window
size from 1000ms to 600ms or 500ms does not negatively
affect the accuracy of the model (the accuracy difference
to the control is not statistically significant: p = 0.647 and
p = 0.277, respectively). The shorter epoch sizes present sta-
tistical difference on the accuracy, sensitivity and specificity
(with p-values for the accuracy difference of 0.012, 0.001
and 0.000 for 400ms, 300ms and 200ms, respectively).
Because the 600ms range preserves the performance of the
model (with the highest accuracy and sensitivity) and cuts
the lag in about half, it is the window used for our model.

Table III shows the results for the new proposed model
and some of the models used for comparison.

We started by determining the best model amongst the
previous ones. An ANOVA test verifies that there is signifi-
cance difference between model accuracies (p = 0.001) and
post-hoc t-tests between ConvArch and CNN-L (p = 0.001)
and between ConvNet and CNN-L (p = 0.016), reveals that

206

TABLE III
REPLICATED RESULTS FOR THREE PREVIOUS CNN MODELS COMPARED

TO OUR PROPOSED MODEL (BEST VALUE PER METRIC IN BOLD)

Model Performance metrics

Accuracy Sensitivity Specificity

ConvArch 71.2%
±1.7%

56.1%
±6.7%

85.4%
±3.2%

ConvNet 76.0%
±0.8%

67.1%
±3.8%

76.3%
±0.8%

CNN-L 77.6%
±0.7%

71.7%
±2.8%

83.1%
±1.5%

Proposed
model

80.4%
±0.7%

75.9%
±1.5%

84.7%
±1.5%

the best model is CNN-L.
Next, we determined our best proposed model out of

the variations introduced in the Proposed model section by
fixating all parameters and testing the accuracies produced
by varying one single parameter at a time. For the best
model, the temporal kernel size was set to T = 20 time
samples and the first convolution layer was not followed by
batch normalization nor an ELU activation function. One
fully connected layer was used with a dropout rate of 20%.

Finally, we verify that, regarding accuracy, our model
outperforms all previous models and, in particular, the best
previous model (CNN-L) with statistical significance (p =
0.0004).

Concerning the replicated models from previous studies,
both ConvNet and ConvArch models report higher accuracy
while using the same dataset. However, for the purposes of
the present work, only the model networks were recycled
while all other procedures such as pre-processing, dataset
balancing, and dataset split were uniformized for a fair
comparison. From the results published by Bellary et al., it
appears that their dataset contains a non-uniform distribution
of subjects, showing an over-representation of subject 1.
Since this particular subject presents one of the highest
accuracies, it introduces a bias in the final reported accuracy.

The random cropping technique used in ConvNet is based
on suggestions from previous work [9] to effectively increase
the dataset size. However, in [9] the percentage of cropped
data compared to the total size is much bigger than that used
by Torres et al. (< 10%). Although being a good technique
for data augmentation, randomly partitioning the data into
such small chunks slows and even prevents the learning
process of the network and that is why we chose not to
apply it in this study.

Finally, we address the commonly cited problem of gen-
eralization. We believe this only constitutes an issue in a
one-size-fits-all paradigm where BCI models are trained by
the data from several subjects. However, in many current

applications, BCIs are used in very personal contexts such
as allowing disabled or locked-in patients to communicate or
control a wheel-chair [10]. Hence, a more tailored approach
must be taken where models can learn generic feature
detection from a large population but also be able to learn
the best correlation of such features for individual subjects.

V. CONCLUSION

In this work, a new model for the classification of error
perception is proposed, which outperforms previous mod-
els. Our shallower architecture together with regularization
methods such as the batch normalization and dropout layers
provides an effective model to classify the presence of error-
related potentials and hence the error perception of a user.

The temporal epoch window is reduced from the typical
1000ms to 600ms while maintaining the same level of accu-
racy, which effectively decreases the lag between acquisition
and processing in real-time applications.

As future work concerning the generalization problem
mentioned previously, we suggest using transfer learning to
achieve the proposed solution regarding generalization: first,
a CNN model is pre-trained on a dataset with a large group
of subjects and later fine-tuned by freezing the early feature
extraction layers and training with only one subject. This is
expected to allow for both a good low-level feature extraction
generalization and a good specificity for individual subjects.

REFERENCES

[1] Sunny Arokia Swamy Bellary and James M. Conrad, “Classification
of Error Related Potentials using Convolutional Neural Networks,” in
2019 9th International Conference on Cloud Computing, Data Science
& Engineering (Confluence). jan 2019, pp. 245–249, IEEE.

[2] Juan M. Mayor Torres, Tessa Clarkson, Evgeny A. Stepanov, Chris-
tian C. Luhmann, Matthew D. Lerner, and Giuseppe Riccardi, “En-
hanced Error Decoding from Error-Related Potentials using Con-
volutional Neural Networks,” in 2018 40th Annual International
Conference of the IEEE Engineering in Medicine and Biology Society
(EMBC). jul 2018, vol. 2018-July, pp. 360–363, IEEE.

[3] Ricardo Chavarriaga and José del R. Millán, “Learning From EEG
Error-Related Potentials in Noninvasive Brain-Computer Interfaces,”
IEEE Transactions on Neural Systems and Rehabilitation Engineering,
vol. 18, no. 4, pp. 381–388, aug 2010.

[4] Tian-jian Luo, Ya-chao Fan, Ji-tu Lv, and Chang-le Zhou, “Deep
reinforcement learning from error-related potentials via an EEG-based
brain-computer interface,” in 2018 IEEE International Conference
on Bioinformatics and Biomedicine (BIBM). dec 2018, pp. 697–701,
IEEE.

[5] Rafael Correia, “Error perception classification in bci using
cnn,” https://github.com/LeafarCoder/Error-perception-classification-
in-BCI-using-CNN, 2020.

[6] Elon Musk, “An Integrated Brain-Machine Interface Platform With
Thousands of Channels,” Journal of Medical Internet Research, vol.
21, no. 10, oct 2019.

[7] Mingfei Liu, Wei Wu, Zhenghui Gu, Zhuliang Yu, FeiFei Qi, and
Yuanqing Li, “Deep learning based on Batch Normalization for P300
signal detection,” Neurocomputing, vol. 275, pp. 288–297, jan 2018.

[8] WA Falcon, “Pytorch lightning,” GitHub. Note:
https://github.com/PyTorchLightning/pytorch-lightning, vol. 3, 2019.

[9] Robin Tibor Schirrmeister, Jost Tobias Springenberg, Lukas Do-
minique Josef Fiederer, Martin Glasstetter, Katharina Eggensperger,
Michael Tangermann, Frank Hutter, Wolfram Burgard, and Tonio Ball,
“Deep learning with convolutional neural networks for EEG decoding
and visualization,” Human Brain Mapping, vol. 38, no. 11, pp. 5391–
5420, nov 2017.

[10] Ujwal Chaudhary, Niels Birbaumer, and Ander Ramos-Murguialday,
“Brain–computer interfaces for communication and rehabilitation,”
Nature Reviews Neurology, vol. 12, no. 9, pp. 513–525, sep 2016.

207

