
  

 

Abstract—Combining electroencephalography (EEG) to 

functional near-infrared spectroscopy (fNIRS) is a promising 

technique that has gained momentum thanks to their 

complementarity. While EEG measures the electrical activity 

of the brain, fNIRS records the variations in cerebral blood 

flow and related hemoglobin concentrations. However, both 

modalities are typically contaminated with artefacts. Muscle 

and eye artefacts, affect the EEG signals, while hemodynamic 

and oxygenation changes in the extracerebral compartment 

due to systemic changes (superficial layer) corrupt the fNIRS 

signals. Moreover, both signals are sensitive to sensor motion 

artefacts characterized by large amplitude. There are several 

well-established methods for removing artefacts for both 

modalities. The objective of this paper is to apply a common 

approach to denoise both EEG and fNIRS signals. Indeed 

Artifact Subspace Reconstruction (ASR) method, which is an 

automatic, online-capable and efficient method for deleting 

transient or large-amplitude EEG artefacts, can be a good 

alternative to also denoise fNIRS signals. In this paper, we 

first propose, a new more comprehensive formulation of 

ASR. Then, we study the effectiveness of the method in 

denoising both the EEG and fNIRS signals. 

 
Clinical Relevance—Denoising EEG and fNIRS signals with 

the same method would facilitate the combination of both 

modalities and hence, help in improving the robustness of 

neural-based diagnostics such as the Alzheimer’s disease. 

I. INTRODUCTION 

  It is well known that EEG recordings are contaminated by 
many sources that are either endogenous (caused by cardiac, 
muscle as well as ocular activities) or exogenous (caused by 
power line noise, electrode movement, impedance mismatch). 
To handle these  contaminants, different EEG artefact removal 
methods have been proposed such as statistical thresholding 
methods, blind source separation (BSS) and principal 
component analysis (PCA). Statistical thresholding methods 
such as those based on the signal variance discard signal 
portions whose variance exceeds a certain value. A calibration 
phase is then required to determine this threshold for each 
subject/session. The BSS-based approaches [1-2] separate data 
into cerebral and non-cerebral activities. To identify artifactual 
components, the method needs either a classifier or signals 
from auxiliary channels like electrooculography (EOG) 
signals.   
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Regarding PCA-based methods, their principle is as 
follows.The methods find orthogonal directions that maximize 
the variance in the observed data. Principal components (PCs) 
with large variance are usually discarded and the data is 
reconstructed from the remaining components.                                    
All these approaches delete noisy data which can cause an 
important loss of neural information. 

  Over the last years, we notice a remarkable use of ASR for 
denoising EEG signals [3-5]. ASR is an automatic PCA-based 
method that not only identifies the portions of data with 
artifacts but also denoise them. It is used in online applications 
to get rid of transient or large amplitude artifacts in EEG 
signals. An offline version of ASR is available in EEGLAB 
[6]. 

  Similarly, fNIRS studies may be affected by physiological 

noise (endogenous sources) or motion artefacts (exogenous 

sources). Indeed, respiration and cardiac changes as well as 

systemic activities in the intra and extra cerebral compartments 

contribute to hemodynamics responses that may be confound 

with the targeted neurovascular coupling, leading to false 

positives or false negatives [7]. On the other hand, fNIRS 

signals may be contaminated by head movements, causing 

transient or large-amplitude artifacts. Several techniques have 

been proposed in the literature to deal with these motion 

artefacts and a review has been proposed in [8].The authors 

compare the performance of different methods on real 

functional data acquired during a cognitive task. They 

compare PCA, spline interpolation, Kalman filtering, wavelet 

filtering and correlation-based signal improvement; they 

conclude that wavelet filtering is a promising and powerful 

technique for the correction of motion artifacts in fNIRS data.  

  In this paper, we evaluate the effectiveness of ASR to 

denoise fNIRS signals and show promising results combining 

EEG and fNIRS modalities in an identical pre-processing 

scheme. Our main goal is to use one single, robust and 

automatic data-denoising method to denoise signals from two 

commercial systems EEG and fNIRS. We first propose a 

more comprehensive formulation of ASR (section II); then we 

show some results (section III) on fNIRS measurements only 

and on combined fNIRS-EEG measurements. We discuss the 

obtained results before a conclusion. 
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II.  MATERIALS AND METHODS 

A.  Dataset and data preprocessing for EEG and fNIRS 

signals 

We acquired a specific dataset with both EEG and fNIRS 

signals to figure out the method and validate the use of ASR 

for both modalities. 

 
  EEG data were recorded through ENOBIO system 

(NeuroElectrics) with only one electrode placed at Fp2 
according to the international 10-20 system. Two additional 
electrodes for referencing and for ground were placed at 
mastoids. The EEG signal, sampled at 500 Hz, was first down-
sampled at 100 Hz and then filtered using band-pass filter [0.5-
40] Hz in order to remove drift and high-frequency noise. 

  fNIRS data were recorded with the dual wavelength 
continuous NIRSport2 system (NIRx Medical Technologies). 
We used a headband of 8 sources and 7 detectors and replaced 
one source by the EEG electrode (see Fig.1). The fNIRS 
signal, sampled at 20.34 Hz was oversampled at 100 Hz – 
cubic interpolation. The short-term fluctuations are subtracted 
from the signal through the use of a moving average.  

  Both systems were synchronized by means of TTL event 

triggers. The experimental procedure was approved by the 

Institutional Review Board. The protocol comprised 3 sessions 

and was performed on one volunteer. During a session, the 

volunteer was asked to blink by wrinkling his forehead every 

time a visual stimulus appears on the screen. The stimulus is 

repeated 10 times every 2 seconds before a rest period. The 

protocol is conceived to induce EEG artefacts via eye blinking, 

and fNIRS artifacts via motion artifacts (motion of the 

headband with respect to the forehead). Some data are shown 

in Fig.2. As the artifacts last almost 0.4 s (Fig.2), this guides 

us to choose values of some parameters of the ASR method 

such as the window length for computing variance thresholds. 

B. ASR 

  Artifact subspace reconstruction (ASR) is a method for 
(online) artefact rejection that has been first introduced in [4]. 
For each sliding EEG window, a principal component analysis 
(PCA) is performed and a mechanism allows to identify clean 
versus noisy PCs. Contrary to standard PCA where noisy PCs 
are discarded for signal reconstruction, the key idea of ASR is 
to treat noisy PCs as missing information and estimate them 
by imposing some covariance constraints. This fact is usually 
quite hidden in the algorithm description and thus we propose 
in this paper to reformulate ASR in a more comprehensive way 
that may open different variants. The ASR method comports 
three distinct steps.  

 

 

 
 

 

 
 

 

 
 

Figure 1. Optical sources (red points)/detectors (blue points) and EEG 

electrode positions (black point). 

 

 
  Figure 2. Visualization of raw data (z-scored). Top figure: data (one      
  channel fNIRS, one channel EEG). Bottom figure: zoom. 

 

  In the first step (i.e. calibration step), the data is 

segmented into non-overlapping 1-second windows and each 

window delivers channelwise root-mean-square (RMS) 

value. The RMS time series is zscored and a window is said 

clean if the zscored RMS value for all channels are  

within a specified interval, typically [-3.5, +5.5] in EEGLAB 

implementation. The clean data matrix 𝐗𝟎 is formed by the 

concatenation of all the clean epochs. Hence, 𝐗𝟎 depends 

implicitly on the chosen zscore interval. 

The proportion of clean data is simply the ratio of the number 

of time samples within clean windows over the total number 

of time samples. 
 

  In the second step, the root-mean-square (RMS) threshold 
vector 𝐬0 is determined:  the spatial covariance matrix 𝐂0 
relative to 𝐗𝟎 is first decomposed using eigenvalue 
decomposition (EVD) as 𝐂0 = 𝐔0diag(𝛌𝟎)𝐔0

𝑇  where 𝐔0 =
[𝐮0,1, . . , 𝐮0,𝑁𝑐

] and 𝑁𝑐 is the number of channels . A PC score 

is computed as 𝐲0,𝑖 = 𝐮0,𝑖
𝑇 𝐗𝟎. By looking at the RMS values 

of successive windows in 𝑦0,𝑖(𝑡), one can deduce the 

mean/standard deviation of the RMS distribution  (𝜇0,𝑖 , 𝜎0,𝑖) 

and a RMS threshold is set as 𝑠0,𝑖 = 𝜇0,𝑖 + 𝜅 ⋅ 𝜎0,𝑖  where 𝜅 is 

an user-defined cutoff parameter. These values are collected in 
the 𝑁𝑐 × 1 vector 𝐬0. 

  In the third step (i.e. operating step), PCA is performed 

on successive EEG epochs. Denote the current spatial 

covariance matrix by 𝐂 = 𝐔diag(𝛌)𝐔𝑇. Let 𝐘 = 𝐔𝑇𝐗 denote 

the 𝑁𝑐 × 𝑁𝑡 PC scores; where 𝑁𝑡  is the number of time 

samples.              

The variance 𝜆𝑖 of each score is compared to the threshold 

‖𝐮𝑖
𝑇𝐔0 ⋅ diag(𝐬0)‖2

2 in order to decide if the principal 

component is clean or noisy. 

Without loss of generality, let 𝐘A = 𝐔A
𝑇𝐗 denote the clean PC 

scores. The main idea of ASR is to compute the smallest-norm 

solution �̂� to the unconstrained least-squares minimization 

problem 

                      𝜙(𝐙) = ‖𝐔A
𝑇𝐂0

1 2⁄
𝐙 − 𝐘A‖

𝐹

2
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The matrix 𝐙 can be interpreted as the ZCA-whitened EEG 

epoch where ZCA stands for zero-phase component analysis  

[9]. 

The denoised EEG epoch is finally given by  

                 𝐗denoised = 𝐂0
1 2⁄

�̂� = 𝐂0
1 2⁄

(𝐔A
𝑇𝐂0

1 2⁄
)

+
𝐔A

𝑇𝐗        

It can be shown to be equivalent to the formulation in [4-5]. 

C. ASR applied to both EEG and fNIRS co-registred signals 

  Before computing artifact statistics, ASR applies to EEG 

data (both reference data 𝐗𝟎 and 𝐗) an IIR filter that is more 

sensitive to blinks (Delta: f<4 Hz) and muscular activities  

(Gamma: f>30Hz) frequency content [3]. The filter is applied 

when computing the thresholds during the second step and the 

scores variances during the operating phase but it is not 

applied on the output signal. We expect that this filter, 

tailored to EEG artefacts, would not be useful to fNIRS 

signals (0.01-0.5 Hz). The effect of the ASR filter on fNIRS 

signals will be studied in the following section. Note that this 

filter is applied optionally which extends the scope of the 

ASR applications to connectivity analyses based on phase-

related metrics. 

III. RESULTS 

  To evaluate ASR, we report the percentage of clean 
portions on the denoised data 𝐗denoised obtained through ASR 
process. To do so, we follow the same strategy that the one 
during the calibration phase of the ASR method but applied to 
the denoised data. The higher the percentage of clean portions, 
the more efficient has been the ASR process. 

  To do so, we compute the z-scores of the RMS values over 
the denoised data signal epochs and identify the clean portions 
as those in which the z-score values are within a certain 
interval.  

  We use this strategy to evaluate the effect of the filter in 
denoising the fNIRS signals. The percentage of the clean 
portions from the ASR denoised data with different cutoff 
parameters 𝜅 and different z-scores intervals is illustrated in 
Fig.3. As expected, the filter does not improve the artefacts 
correction, whaterver the z-scores values, for almost all values 
of 𝜅. 

  We further study the influence of the cutoff parameter 
involved in the ASR process; as expected, the higher the 
parameter, the less corrections allowed during the ASR 
process. This results in a lower percentage of clean portions of 
𝐗denoised (Fig. 3). For a very large value of κ, no more 
corrections are induced by the ASR process, which leads to 
leave data unchanged. This converges to a constant percentage 
of clean data that represents 𝐗𝟎; its value depends on the z-
score interval : it is about 60% for [-3.5 , 3], 70% for [-3.5 , 4] 
and 80% for [-3.5 , 5]. The higher the z-score interval, the more 
data are considered as clean. In the following, the z-scores 
values are set to [-3.5, 4]. 

 

Figure 3. Percentage of clean portions on the denoised data by ASR 

with different cutoff parameters and different z-scores intervals. 

 

  Moreover, we propose to denoise simultaneously both 
EEG and fNIRS measurements using the ASR method. The 
signals are z-scored before ASR processing. Three 
configurations are considered: In the first configuration, the 
IIR-filter defined in ASR method is applied on both modalities 
before computing artefact statistics. In the second case, 
statistics are computed on raw data for both EEG and fNIRS 
signals. Finally, in the third configuration, the filter is only 
applied to the EEG signal. These configurations are assessed 
in terms of percentage of clean portions on the denoised data 
as previously. Results in Fig.4 show that the best performance 
is obtained when the IIR-filter is not applied for 𝜅 >6;                      
for 𝜅 =10, 88% of clean portions on the denoised data is 
achieved with the second configuration, while, 70% and 81% 
are obtained with the first and third configuration respectively. 
For 𝜅 <6, the results are almost equivalent between the second 
and third configurations (raw data and filter on EEG only). 
Considering these results, we retain the configuration without 
any filter in the following. 

Now this criterion - percentage of clean portions on 
denoised data 𝐗denoised  is not sufficient to determine the best 
ASR cutoff parameter to be used. Indeed, a high percentage 
may induce an excessive cleaning process, co-responsive to 
non-physiological changes in the initial signals. That is why 
we propose a second criterion, which computes the percentage 
of the retained data from the original set. The higher the value 
of 𝜅, the higher the percentage of retained data and the lower 
is the percentage of clean portions onto the denoised data (Fig. 
5). 

The value of 𝜅 should then be selected such that brain 
activities would be preserved and the percentage of clean 
portions on the denoised data would be high. Here, we opt for 
the value of 𝜅 =5. This value seems to be aggressive as only 
64% of initial data is retained. However, we should recall that 
our measurement does not involve any neuro information. It is 
rather composed of regularly-occuring large amplitude 
artefacts that are hard to remove without aggressive cutoff 
parameter [3].Visual inspection of the data before and after 
ASR cleaning (Fig.6) shows that the method is efficient in 
cleaning both EEG and fNIRS signals.  
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Figure 4. Percentage of clean portions on denoised data with different 
cutoff parameters and with different configurations. 

 

 

Figure 5. Percentage of post-processed cleaned data and percentage 

of retained data with different cutoff parameters, without the IIR-
filter. 

 
Figure 6. EEG and fNIRS signals without filter before (black curve) 

and after (red curve) ASR cleaning, 𝜅 =5.  
 

IV. CONCLUSION 

  In this paper, we have presented a more comprehensive 
formulation of ASR that may open different variants. In 
addition, we have examined the effectiveness of the method in 
cleaning first fNIRS signals, then fNIRS-EEG measurements 
from eye-blinking artefacts in the EEG and motion artifacts in 
the fNIRS. Results showed that the method can be used as one 

single, robust and automatic data-cleaning method for both 
modalities.  

  The use of one single data-cleaning method may facilitate 
combining both modalities, taking advantage of them to obtain 
more accurate results than the individual modalities alone. 
Moreover, the combination of the two modalities allows the 
use of the ASR approach even in case of limited number of 
channels, one modality helping the other in the correction 
process.  

  In the near future, the method will be tested on larger data 
set where artefacts of both modalities are spontaneously 
generated and the choice of best value of the ASR cutoff 
parameter may be discussed from the percentage of retained 
data and that of clean portions on the denoised data. 
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