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Abstract— Motor imagery-based brain computer interface
(MI-BCI) is a representative active BCI paradigm which is
widely employed in the rehabilitation field. In MI-BCI, a
classification model is built to identify the target limb from MI-
based EEG signals, but the performance of models cannot meet
the demand for practical use. Lightweight neural networks in
deep learning methods are used to build high performance
models in MI-BCI. Small sample sizes and the lack of
multi-scale information extraction in frequency domain limit
the performance improvement of lightweight neural networks.
To solve these problems, the Filter Bank Sinc-ShallowNet
(FB-Sinc-ShallowNet) algorithm combined with the mixed
noise adding method based on empirical mode decomposition
(EMD) was proposed. The FB-Sinc-ShallowNet algorithm
improves a lightweight neural network Sinc-ShallowNet with
a filter bank structure corresponding to four sensory motor
rhythms. The mixed noise adding method employs the EMD
method to improve the quality of generated data. The proposed
method was evaluated on the BCI competition IV IIa dataset
and can achieve highest average accuracy of 77.2%, about
6.34% higher than state-of-the-art method Sinc-ShallowNet.
This work implies the effectiveness of filter bank structure in
lightweight neural networks and provides a novel option for
data augmentation and classification of MI-based EEG signals,
which can be applied in the rehabilitation field for decoding
MI-EEG with few samples.

I. INTRODUCTION

Brain computer interface (BCI) is a communication system
between the human brain and external devices without the
peripheral nerves and muscles [1]. MI-BCI is the representa-
tive paradigm of BCI and can output the movement intention
without external stimulation [2]. The classification of MI-
based EEG (MI-EEG) signals is the main topic in MI-BCI
studies. A classification model that can detect the target limb
of the subject is trained by features extracted from the MI-
EEG data. However, the classification accuracy of existing
methods is not high enough for practical use. Building a
high-performance model is still the challenge of MI-BCI
studies.

Machine learning methods and deep learning methods are
frequently used for feature extraction and classification in
MI-BCI. In machine learning methods, Common Spatial
Patterns (CSP) [3], Filter Bank Common Spatial Patterns
(FBCSP) [4] and Riemannian geometry-based methods [5]
are frequently employed because of their stability. In recent
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years, researchers have found that deep learning methods can
get stronger classification performance than machine learning
methods [6], and feature engineering is not required so raw
EEG signals can be used as the input [7]. For intra-subject
studies in MI-BCI with deep learning methods, lightweight
neural networks [8] have high decoding performance because
they have simple structure, which can alleviate the overfitting
problem. For example, the ShallowConvNet [8] and the Sinc-
ShallowNet [9] algorithm are lightweight neural networks
and can achieve 71% and 72.8% mean accuracy respectively
on the BCI Competition IV IIa dataset [10] with four target
limbs (including left hand, right hand, both feet and tongue).
However, few samples and the lack of multi-scale informa-
tion extraction in frequency domain limit the performance of
lightweight neural networks.

Few samples (or insufficient sample sizes) can cause the
overfitting problem that limits the performance of lightweight
neural networks. To solve this problem, data augmentation
methods commonly used in deep learning can help increase
the sample size of MI-EEG data to meet the large data
demand of deep learning methods [11]. Window slicing,
noise adding and generative adversarial networks (GAN)
are commonly used data augmentation methods in MI-BCI.
Window slicing is suitable for processing raw EEG signals
[8], but the effect is not significant when accompanied with
lightweight neural networks [8]. Noise adding is frequently
used with lightweight neural networks and can augment raw
EEG [12]. GAN is often used with the time-frequency rep-
resentation of EEG signals [13]. Besides, the EMD method
[14] is also used for data augmentation of time-frequency
representation of MI-EEG signals by switching the intrinsic
mode function (IMF) components acquired from EMD [15].
According to aforementioned data augmentation methods,
the noise adding method is suitable for data augmentation in
lightweight neural networks that process raw EEG signals.
However, directly adding noise to MI-EEG signals that have
low SNR will generate trials with lower SNR, which could
limit the effect of data augmentation.

Additionally, the input of lightweight neural networks is
usually MI-EEG signals filtered by a bandpass filter with
one frequency band that covers multiple motor rhythms. The
lack of the capability of extracting information from different
rhythms could limit the decoding performance because the
specific frequency band could be different for different types
of movement imagination. The filter bank structure that
corresponding to different motor rhythms can help solve this
problem by extracting useful features from different tasks.

Therefore, in this work, we proposed a lightweight neural
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network FB-Sinc-ShallowNet to improve Sinc-ShallowNet
with a filter bank corresponding to different rhythms to
increase the decoding accuracy. Accompanied with FB-
Sinc-ShallowNet, we designed the EMD-based mixed noise
adding data augmentation method to solve the few sam-
ples problem. The mean accuracy of the proposed method
on the BCI Competition IV IIa dataset is 77.2%, about
6.34% higher than that of the state-of-the-art method Sinc-
ShallowNet. Moreover, the accuracy of FB-Sinc-ShallowNet
combined with the proposed data augmentation method is
1.84% higher than that of FB-Sinc-ShallowNet with other
data augmentation methods. These indicate that proposed
methods can improve the decoding performance of the MI-
EEG classification model. The structure of this paper is as
follows: Section 2 describes the proposed method in detail.
The results are presented and discussed in Section 3. Section
4 is the conclusion of this paper.

II. METHOD

In this section, we introduce the Euclidean alignment (EA)
preprocessing method, EMD-based mixed noise adding data
augmentation (DA) method and the FB-Sinc-ShallowNet
algorithm. The structure of the three methods is shown
in Fig. 1. The proposed methods were evaluated on the
BCI Competition IV IIa dataset [10] that has two sessions.
Raw EEG signals in each session were filtered by a third-
order Butterworth band-pass filter in the 4-40hz frequency
band and standardized with an exponential moving average
window with a decay factor of 0.999. Trials were extracted
from 0.5 s to 2.5 s after the cue. Trials and labels are denoted
as a matrix X with dimension N × E × T and a vector
y with length N respectively, where N(N = 288) is the
number of trials, E(E = 22) is the number of channels, and
T (T = 500) is the number of sampling points. In session
1, 80% and 20% of trials were used as the training set and
validation set respectively. All trials in session 2 were used
as the test set.

A. Euclidean Alignment

The Euclidean alignment method is used to preprocess
the MI-EEG signal to improve the decoding performance by
transforming the mean covariance matrix of MI-EEG signals
to an identity matrix [16]. Given the trials X of a subject,
the arithmetic mean of the covariance matrix of N trials are
computed to construct a transformation matrix shown in (1).

X̄ =
1

N

N∑
i=1

XiX
T
i

Pi = X̄−
1
2Xi

(1)

For intra subject experiments in this work, MI-EEG data are
collected from the same subject but at different time. Eu-
clidean alignment can help reduce the difference on features
of data from the two sessions.

B. EMD-based Mixed Noise Adding Data Augmentation

To improve the quality of generated trials in the noise
adding method, we proposed a mixed noise adding data
augmentation method based on EMD [14]. The method
includes the following four steps.

1) EMD and IMF Components Selecting: The original
signal is decomposed by EMD to get the principal compo-
nents (called IMF components) of the signal. The signal Xi,e

of trial i on channel e, denoted as S, can be decomposed into
J IMF components and the residue r. Then, the correlation
coefficients of signal S and every IMF component are
computed. The IMF components with correlation coefficients
less than 0.1 are dropped. The number of retained IMF
components is J ′.

2) Estimating the Energy of IMF Components: The en-
ergy of the first IMF component is estimated by (2).

Ê1 =

T∑
t=1

IMF 2(t) (2)

Then, the energy of other IMF components are estimated
by (3), where H is the Hurst index, and βH and ρH are
parameters that vary with H . In practice, H = 0.5, βH =
0.719, and ρH = 0.201 [17].

Êj′ =
Ê1

βH
ρ
−2(1−H)j′

H , j′ ∈ {2, 3, · · · , J ′} (3)

3) IMF Components Filtering with Adaptive Thresholds:
After estimating the energy of IMF components, each IMF
component is filtered by two steps. First, the IMF component
j′ is divided into P segments arranged in ascending order
according to their extrema. The extremum of a segment
is denoted as e

(j′)
p (p ∈ {1, 2, . . . , P}) whose energy is

E
(j′)
p = (e

(j′)
p )2. Next, the cumulative sum of energy is

computed in ascending order until (4) is satisfied.
q−1∑
p

E(j′)
p ≤ Êj′ <

q∑
p

E(j′)
p (4)

The absolute value of the extremum of segment q is taken
as the adaptive threshold Tj′ =

∣∣∣e(j′)q

∣∣∣. Then, according to
the rule shown in (5), the signal in each segment is filtered
where IMFj′,p is segment p of IMF component j′, and ej′,p
is the extremum of segment p.

IMFj′,p =

{
0, ej′,p < Tj′

IMFj′,p, ej′,p ≥ Tj′
(5)

After filtering all J ′ IMF components based on the adaptive
threshold, the sum of all IMF components are computed to
reconstruct signal S′.

4) Mixed Noise Generating: After extracting the main
information S′ of the original signal, a white noise sequence
with a specific SNR is generated based on S′. Let SNR = s,
and the energy of white noise Enoise can be computed by
(6).

Enoise =
Esignal

10s/10
=

1
T

∑T
t=1 S

′(t)2

10s/10
(6)
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Fig. 1. Framework of employed methods

Then, a white noise sequence a = [a0, a1, . . . , aT ] with
length T , zero mean and standard deviation σ is multiplied
by Enoise and then added to the signal S′ to get the mixed
noise sequence agen. Note that the SNR s and the standard
deviation σ need to be adjusted. Here, they are set to σ =
0.02, s = 1dB. The mixed noise is added to the original
signal after generated for data augmentation. After training
on the larger dataset, the decoding performance of the model
can be improved.

C. FB-Sinc-ShallowNet

In order to extract features from different rhythms to
further improve the decoding performance, we designed the
FB-Sinc-ShallowNet algorithm to improve Sinc-ShallowNet.
The structure of FB-Sinc-ShallowNet is shown in Fig. 1. Four
groups of feature maps are extracted from four branches,
concatenated along the channel axis, regularized by a dropout
layer [18] with dropout rate set to 0.5, and finally classified
by a SoftMax function with the maximum norm constraint of
0.5 after flattened. Layers in each branch is described below.

1) SincConv layer: A sinc convolutional (SincConv) layer
performs a temporal convolution between the input signal
and a Finite Impulse Response (FIR) filter to extract more
meaningful features [19]. Concretely, a SincConv layer is
defined as (7),

y[T ] = x[T ] ∗ h(T, fl, fh) (7)

where fl (the lower frequency bound) and fh (the upper
frequency bound) are trainable parameters, x[T ] is a signal
with length T , y[T ] is a filtered signal with length T , and
h(T, fl, fh) = 2fhsinc(2πfhT ) − 2flsinc(2πflT ) is the
convolutional kernel where sinc(·) denotes the sinc function
sinc(x) = sin(x)/x. The Hamming window function is
introduced into the kernel function to produce a better band-
pass filter, as shown in (8), where L is the length of the
convolution kernel in time domain.

h[T, fl, fh] := h[T, fl, fh] · [0.54− 0.46cos(
2πT

L− 1
)] (8)

The initialization of a SincConv layer determines the
learned frequency band of interest. The frequency band of
interest in Sinc-ShallowNet is [4,40) which covers four type

of MI-EEG rhythms. We believe that extracting temporal
information from different rhythms separately can help ex-
tract multi-scale features in time-frequency domain. To this
end, we split the frequency band of interest from [4, 40) to
[4,8), [8,14), [14,30) and [30,40) (corresponding to θ rhythm,
α rhythm, β rhythm and low γ rhythm respectively). Four
SincConv layers are initialized by these frequency bands of
interest with four groups of signals used as the input of each
layer respectively. Then, a batch normalization layer [20] is
placed after the SincConv layer, and its parameters are set
to m = 0.99, ε = 1e− 3 to improve the stability.

2) Depthwise convolutional layer and Pooling layer: A
depthwise convolutional layer [21] (kernel size E × 1) with
a maximum norm constraint of 1 is used to extract the spatial
information from feature maps. Then, a batch normalization
layer followed by an exponential linear unit (ELU) activation
function (with the parameter α set to 1) is employed. Next,
an average pooling layer (pooling size 1× 109, stride 23) is
employed to compress the time-domain information of the
feature map.

D. Training Procedure

1) Parameter Setting and Initialization: The cross-
entropy was chosen as the loss function. Adam [22] was
used as the optimizer with learning rate set to 0.001 and
other parameters set to default. The batch size is 64. The
parameters of SincConv layers were initialized by the method
described in Section II-C. Other parameters were initialized
by the Xavier uniform initialization [23].

2) Training and Testing: There are two phases in the
training process with 800 maximum number of epochs for
each phase. In the first phase, when the validation loss
reaches the minimum, early stopping was performed to
prevent overfitting. In the second phase, with validation set
merged into the training set, the training is terminated when
the validation loss is less than the training loss in the first
phase.

III. RESULTS
The proposed method and existing methods were imple-

mented by a deep learning framework TensorFlow 2 with
Keras API. The performance of the proposed method was
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verified in comparative experiments, and the necessity of
the two proposed methods were evaluated in the ablation
study. To verify the significance, one sided Wilcoxon signed-
rank test [24] with false discovery rate (FDR) [25] correction
(α = 0.05) was performed to detect the significance of the
difference between the proposed method and other methods.
This section describes the experiment process and results in
detail.

A. Comparison with State of the Art

The performance of the proposed method was compared
with state-of-the-art methods including DeepConvNet [8],
ShallowConvNet [8], EEGNet [7] and Sinc-ShallowNet [9].
All compared methods have openly (or partially) available
codes and were implemented using the intra-subject version.
If their parameters are different from the settings described
in Section II-D, adjustments were performed according to
the design of the original work to reproduce similar results
with the same experiment setup.

The result is listed in Table I where the highest accu-
racy or the lowest standard deviation (denoted as Std) are
shown in bold, and DeepConvNet, ShallowConvNet and
Sinc-ShallowNet are denoted as Deep, Shallow and Sinc
respectively. As listed in Table I, the average accuracy of
the proposed method is about 6.3% higher than the optimal
compared method Sinc-ShallowNet. The accuracy of our
proposed method on all subjects are significantly higher than
compared methods with all p-values of Wilcoxon signed-rank
test less than 0.05. This indicates the significantly superior
performance of the proposed method. In addition, our method
has the lowest standard deviation, which shows that the
proposed method has the highest stability.

TABLE I
COMPARISON RESULT

Subject Deep Shallow EEGNet Sinc proposed
1 0.667 0.806 0.771 0.819 0.844
2 0.34 0.493 0.448 0.497 0.590
3 0.705 0.847 0.816 0.84 0.889
4 0.253 0.726 0.569 0.74 0.750
5 0.243 0.583 0.625 0.559 0.667
6 0.257 0.545 0.503 0.538 0.597
7 0.684 0.795 0.663 0.844 0.872
8 0.649 0.809 0.74 0.847 0.875
9 0.736 0.792 0.767 0.854 0.868

Average 0.504 0.711 0.656 0.726 0.772∗

Std 0.209 0.126 0.122 0.142 0.117

B. Ablation Study

To verify the necessity of two proposed methods, an
ablation study was performed. The following methods were
used: (1) the proposed method without the proposed data
augmentation method, denoted as “proposed (w/o DA)”; (2)
the proposed method without using the filter bank structure,
i.e., the Sinc-ShallowNet method with the proposed data aug-
mentation method, denoted as “proposed (w/o FB)”. Results
are shown in Table II. The highest accuracy or the lowest
standard deviation (denoted as Std) are shown in bold. Table

II shows that the proposed data augmentation method and
the filter bank structure of FB-Sinc-ShallowNet can enhance
the accuracy by 1.85% and 2.52% respectively (with all p-
values less than 0.05), and the accuracy of proposed method
on 7 subjects are higher than other methods. Additionally, the
standard deviation of the proposed method accuracy is the
lowest, which shows that the proposed data augmentation
method combined with FB-Sinc-ShallowNet algorithm has
higher stability.

TABLE II
ABLATION STUDY OF PROPOSED METHODS

Subject proposed(w/o DA) proposed(w/o FB) proposed
1 0.861 0.844 0.844
2 0.545 0.576 0.590
3 0.878 0.882 0.889
4 0.729 0.729 0.750
5 0.660 0.639 0.667
6 0.552 0.535 0.597
7 0.868 0.861 0.872
8 0.854 0.844 0.875
9 0.872 0.865 0.868

Average 0.758 0.753 0.772∗

Std 0.132 0.129 0.117

C. Comparison of Data Augmentation Methods

Aiming at verifying the effect of the proposed data
augmentation method, window slicing, white noise adding
and the proposed EMD-based mixed noise adding methods
were compared, with the FB-Sinc-ShallowNet employed as
the classification method. The window slicing method was
implemented according to the design of Borra et al.[9]. The
window length is 2s, overlap is 0.5s, and the data from 0.5s
to 4s after cue were extracted. In the white noise adding
method, the mean, standard deviation and SNR were set
to the same value as the EMD-based mixed noise adding
method.

Fig. 2. Comparison of data augmentation methods

As depicted in Fig. 2, the proposed method achieves higher
accuracy for most subjects, and the average accuracy of the
proposed method (77.2%) is higher than that of the white
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noise adding method (75.8%) with statistical significance.
Additionally, the proposed method yields superior accuracy
on all subjects compared with the window slicing method. In
this work, the proposed FB-Sinc-ShallowNet is a lightweight
neural network that processes raw EEG signals. Therefore,
noise adding methods have better effect than the window
slicing method, which is consistent with the conclusion of
existing research [9]. Moreover, in noise adding methods, the
proposed EMD-based mixed noise method is better. How-
ever, the computational cost of EMD limits the speed of the
proposed method. Optimizing the computational efficiency
of EMD is expected in future work.

IV. CONCLUSION

In this work, we proposed FB-Sinc-ShallowNet, a
lightweight neural network that leverages the filter bank
structure to improve Sinc-ShallowNet, accompanied with the
EMD-based mixed noise adding method that improves the
noise adding data augmentation method with EMD. A com-
parison study was performed between the proposed method
and state-of-the-art methods. Superior performance (the aver-
age accuracy is 77.2%) and stability (the standard deviation
is 0.117) of proposed methods were verified. Therefore, we
believe that FB-Sinc-ShallowNet combined with the EMD-
based mixed noise adding method can improve the decoding
performance of MI-EEG classification. Future work includes:
(1) speeding up the EMD process; (2) exploring the effect
of proposed methods in inter subject experiments.
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[17] P. Flandrin, P. Gonçalves, and G. Rilling, “Emd equivalent filter banks,
from interpretation to applications,” in Hilbert-Huang transform and
its applications, pp. 57–74, World Scientific, 2005.

[18] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhut-
dinov, “Dropout: a simple way to prevent neural networks from
overfitting,” J. Mach. Learn. Res., vol. 15, no. 1, pp. 1929–1958, 2014.

[19] M. Ravanelli and Y. Bengio, “Speaker recognition from raw wave-
form with sincnet,” in IEEE Spoken Lang. Technol. Workshop (SLT),
pp. 1021–1028, 2018.

[20] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” in Int. Conf.
Mach. Learn., pp. 448–456, 2015.

[21] F. Chollet, “Xception: Deep learning with depthwise separable convo-
lutions,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
July 2017.

[22] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” arXiv preprint arXiv:1412.6980, 2014.

[23] X. Glorot and Y. Bengio, “Understanding the difficulty of training
deep feedforward neural networks,” in Proc. Int. Conf. Artif. Intell.
Statist., pp. 249–256, 2010.
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