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Abstract— State-of-the-art solvers for in silico cardiac electro-
physiology employ the Finite Element Method to solve complex
anatomical models. While this is a robust and accurate tech-
nique, it requires a high-quality mesh to prevent its accuracy
from being severely deteriorated. The generation of a good
quality mesh for realistic anatomical models can be very time-
consuming, making the translation to the clinics challenging,
especially if we try to use patient-specific geometries.

Aiming to tackle this challenge, we propose an image-based
model generation approach based on the meshfree Mixed Col-
location Method. The flexibility provided by this method during
model generation allows building meshfree models directly from
the image data in an automatic procedure. Furthermore, this
approach allows interpreting the simulation results directly in
the voxel coordinates system of the image.

We simulate electrical propagation in a porcine biventricular
model with the proposed method and we compare the results
with those obtained using the Finite Element Method. We
conclude that the proposed method can generate results
that are in good agreement with the Finite Element Method
solution, alleviating the requirement of a mesh and user-input
during modeling with only minimum efficiency overhead.

Clinical relevance— This study establishes a novel pipeline
for automatic image-based meshfree modelling for in-silico
electrophysiology that is suitable for use in a clinical setting.

I. INTRODUCTION

Sophisticated multiscale models are nowadays widely used
to simulate cardiac function in healthy and disease conditions
with increasing complexity. Such models couple a system
of ordinary differential equations (ODE) to describe cellular
dynamics (microscale) with either the bidomain [1] or the
simplified monodomain model [2] to describe the propaga-
tion of the electrical impulse in the heart (macroscale).

Commonly, the Finite Element Method (FEM) is em-
ployed to solve such models. Despite FEM popularity in
research, the application in the clinics is rather limited. This
is mainly due to the FEM requirement for a good-quality
mesh in order to ensure good accuracy. When mesh quality
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is reduced, the accuracy of FEM is severely deteriorated
and may lead to erroneous results. Therefore, FEM requires
time-consuming preprocessing to ensure mesh quality, which
does not comply with clinical time restrictions, thus posing
challenges to the wide adoption of this method in the clinics.

On the other hand, meshfree methods alleviate the mesh
requirement of FEM and hence may be used to solve
electrophysiology models in a more suitable way for clinical
applications. Different meshfree approaches have already
been proposed for in silico electrophysiology [3], [4], [5].
Amongst them, the Mixed Collocation Method (MCM) [6]
has been proven as a promising alternative for the solution
of the monodomain model, demonstrating both accuracy
and efficiency in good agreement with FEM. MCM rather
than using a mesh, obtains the solution at each field node
by evaluating meshfree approximants in a support domain
around the field node. The support domain is composed
of a group of support nodes in the vicinity of the field
node, including itself. The inherent flexibility of meshfree
model generation in MCM allows to introduce the notion
of immersed grid generation, where the meshfree model is
generated automatically by embedding a grid of regularly
distributed nodes inside a triangular surface mesh represen-
tation of the anatomy [6].

In this work, we employ MCM to generate image-based
anatomical models based on the immersed grid approach for
suitable in silico electrophysiology in clinical applications.
Meshfree models are generated automatically by directly
converting voxels in image coordinates into meshfree points
in physical coordinates that are embedded in a surface mesh
representation of the image segmentation boundary. The
novelty is that a one-to-one relationship between image data
and meshfree model is established. This allows to directly
map the model’s solution to the image data and may aid the
clinician during the simulation interpretation process.

II. METHODS

A. Mixed Collocation Method Monodomain Model

The monodomain model assumes equal anisotropy ratios
for the intracellular and extracellular spaces. Under this
assumption, the propagation of the electrical impulse is
obtained by solving the reaction-diffusion equation:

∂V/∂t = ∇ · (D∇V ) − Iion(V )/C in Ω
n · (D∇V ) = 0 on ∂Ω

(1)

where V is the transmembrane potential, Iion is the total
ionic current and C is the cell capacitance per unit surface
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area. Ω and ∂Ω denote the domain of interest and its bound-
ary; n is the outward unit vector normal to the boundary; D
is the diffusion tensor given by:

D = dl [(1 − ρ)f ⊗ f − ρI] (2)

where dl denotes the longitudinal diffusion coefficient, ρ ≤
1 is the transverse-to-longitudinal conductivity ratio and f
is the cardiac fiber direction vector. I denotes the identity
matrix and ⊗ the tensor product operation.

The Mixed Collocation Method (MCM) formulation of the
monodomain model is derived applying operator splitting
to decouple the reaction and diffusion terms in Equation
(1). We construct the Petrov-Galerkin weak-form of the
diffusion term’s equation using meshfree approximants as
approximation functions and the Dirac delta distibution as
test functions. Applying interpolation to both V and ∇V
using the meshfree approximants, we obtain:

∂Vi/∂t = −Iion(Vi)/C in Ω∑m
j=1 φ

j
i∂Vj/∂t =

∑m
j=1 ∇ ·D∇TφjiVj in Ω∑m

j=1 n ·D∇φjiVj = 0 in ∂Ω

(3)

where i = 1, 2, . . . , n connotes the field nodes in the
discretization of Ω, j = 1, 2, . . . ,m connotes the field nodes
in the support domain of i (being i one of these nodes) and
φji is the value of the meshfree interpolation vector φi for
component j.

In this work, we use the Moving Kriging Interpolation
(MKI) meshfree approximants, so φi is then expressed as:

φi = piA+ ciB (4)

where pi denotes the linear polynomial basis vector

pi = [1 xi yi zi] (5)

with xi, yi, zi being the spatial coordinates and ci being
the correlation function vector. We use Multiquadric Radial
Basis Function (MQ-RBF) as correlation function to obtain:

ci = [ci1 ci2 . . . cim]

cij =
(
r2ij + r2c

)q
rc = αcdc

(6)

where rij is the Euclidean distance between points i and j.
rc and q denote shape parameters. The matrices A and B
are obtained by:

A = (P TC−1P )−1P TC−1

B = C−1(I − PA)
(7)

where P and C are the moment matrices for the polynomial
basis matrix and the correlation matrix, respectively.

B. Image-based model generation
The pipeline for image-based meshfree model generation

for in silico electrophysiology is depicted in Figure 1. In the
following, we describe the process to generate a biventricular
model from ex vivo diffusion-weighted magnetic resonance
imaging (DW-MRI) data of a porcine heart. The data was
acquired at Instituto de Investigación Sanitaria Gregorio
Marañón (IISGM) using Philips Achieva 1.5T.

1) Image segmentation: Ventricles of an ex vivo porcine
heart were segmented manually from a DW-MRI dataset with
dimensions 128× 128× 83 and voxel size 1.09× 1.09× 1.2
mm using 3DSlicer. Three different labels were included in
the segmentation, partitioning the ventricular anatomy in en-
docardial:midmyocardial:epicardial regions with a 45:25:30
ratio. Median filter smoothing with 2mm kernel size was ap-
plied on the segmentation data to ensure a smooth boundary.

2) Meshfree model: The meshfree model was generated
automatically from the segmentation data using the immersed
grid approach. Meshfree field nodes were distributed at
the center of each voxel belonging to the segmentation of
the ventricular anatomy. Endo:mid:epi partition information
stored in the segmentation data voxels was assigned to
the meshfree field nodes. Subsequently, a smooth triangular
surface mesh representation of the segmented ventricles was
generated using Delaunay triangulation. The average triangle
circumference of the mesh was 0.9 mm. An inclusion test
[7] was performed to discard field nodes that were located
outside of the triangular mesh boundaries. The final model
was composed of the field nodes inside the triangular mesh
and on its surface. The surface connectivity was discarded
since it is not required for MCM.

3) Myocardial fibers: The direction of myocardial fibers
for voxel-derived field nodes was computed by processing
the DW-MRI data and computing diffusion tensor (DT)
fields. Prior to DT computation, Linear Minimum Mean
Squared Error (LMMSE) filtering using joint information
was applied to reduce Rician noise [8]. DT fields were
computed by first evaluating a tensor spline from a weighted
intrinsic average of tensors using Riemannian distances and
then minimizing the Riemannian distance between the eval-
uated tensor spline and the DW-MRI data [9]. Next, the
eigenvalue problem was solved for each voxel’s diffusion
tensor field to obtain the principal eigenvector, which was
considered as the direction of the cardiac fiber direction at
the corresponding field nodes. The direction of cardiac fibers
at field nodes on the surface of the triangular mesh was
computed using interpolation with MKI approximants.

4) Conduction system: The conduction system of the
biventricular anatomy was generated in two steps. Initially,
the bundle of His was constructed manually by including
field nodes laying on the endocardial surfaces of the two
ventricles. The bundle of His branched into the left and
right bundle branches, which conduct the electrical impulse
to the left ventricle (LV) and the right ventricle (RV),
respectively. The left bundle branch was further subdivided
into left anterior and posterior fascicles. Next, a fractal tree
algorithm was used to generate the Purkinje branches of
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Fig. 1: Image-based model generation pipeline. All the tasks in the depicted process were performed automatically except
for the segmentation task, which was performed manually.

the conduction system [10]. Purkinje-myocardial junctions
(PMJ) were computed using a range-search algorithm to
identify meshfree field nodes of the biventricular model that
lie inside the sphere of influence (R=2mm) of each end-point
of the Purkinje network.

C. MCM simulation & validation

A simulation of the electrical propagation in the biven-
tricular model (field nodes: 70027) was performed using
MCM with MKI approximants. MQ-RBF was chosen as
correlation function for the MKI computation using shape
parameters rc = 1.03 and q = 1.62. Support domains were
constructed including 160 nearest field nodes to ensure high
collocation accuracy. Cell electrophysiology was described
by the O’Hara model [11].

Rather than implementing electrical impulse propaga-
tion in the conduction system, PMJs were partitioned into
seven groups: LV septum (LV S); LV base (LV B); LV
mid (LVM ); LV apex (LV A); RV base (RV B); RV mid
(RVM ); and RV apex (RV A). A time delay was applied
during stimulation to obtain a realistic activation pattern
[12]. The applied time delays at the different groups were
LV S = 0 ms, LV B = 25 ms, LVM = 14 ms, LV A = 5
ms, RV B = 27 ms, RVM = 16 ms and RV A = 7 ms.
The stimulus amplitude was twice the diastolic threshold,
its duration was td = 1 ms and its period tp = 1 s.
Simulations were performed using a dual adaptive explicit
time integration method with time step dt = 0.1 ms [13].

After achieving steady-state when pacing at a cycle length
of 1000 ms, the electrical impulse propagation for t = 500
ms was simulated to measure the local activation time (LAT )
and the action potential duration at 90% repolarization
(APD90). LAT was calculated as the time interval between
the stimulus application (t = 0 ms) and the time instant of
each AP’s maximum upstroke derivative.

To validate the MCM solution, the same simulation was
performed with FEM using a tetrahedral mesh (nodes: 44694,
elements: 220084) of the biventricular anatomy. The endo-

cardial, midmyocardial or epicardial attribute as well as the
cardiac fiber direction were assigned to each node of the
tetrahedral mesh identifying them with the corresponding
values of the nearest meshfree field node.

III. RESULTS

LAT measurements in MCM and FEM simulations were
in good agreement. For both simulations, LAT lied in the
range 1 − 69 ms. The mean LAT value was 25.54 ms for
MCM and 25.38 ms for FEM. A comparison of normalized
histograms for MCM and FEM is shown in Figure 2. As it
can be observed from Figure 2, differences were mainly in
the LAT range of 5− 30 ms, with more nodes in this range
being activated for FEM as compared to MCM.

Fig. 2: Normalized histogram of LAT for FEM and MCM
simulations.

Similar results were obtained for APD90, which was in
the range 180 − 285 ms for both MCM and FEM. The
APD90 average value was 249.46 ms for MCM and 248.80
ms for FEM. In the APD90 normalized histogram (Figure 3),
the highest difference between MCM and FEM solutions is
in the range 220−250 ms, with more nodes having APD90

in this range for the FEM simulation. In addition, LAT and
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APD90 differences between MCM and FEM were quantified
by calculating the normalized histogram intersection (NHI)
as a metric of histogram similarity ranging between 0 and
1. High similarity was found for both LAT and APD90

histograms with NHILAT = 0.91 and NHIAPD90 = 0.74.

Fig. 3: Normalized histogram of APD90 for FEM and MCM
simulations.

In terms of execution efficiency, the FEM simulation
required 8.6 mins while the MCM simulation required 13.3
mins (1.5× slower). Finally, in Figure 4 we provide LAT
and APD90 color maps generated by MCM in the voxel
coordinates system since the one-to-one relationship between
the field nodes of the image-based meshfree model with
the voxels of the image data allows to interpret the MCM
solution results directly on this coordinate system.

Fig. 4: LAT and APD90 color map interpretation in voxel
coordinates system. Axial slice at a) z = 18 mm, b) z = 36
mm and c) z = 61.2 mm.

IV. DISCUSSION AND CONCLUSION

In this study, we present a novel approach for image-
based meshfree model generation using the MCM method for
in silico electrophysiology. We demonstrate that MCM can
generate results in good agreement with FEM with minimum
efficiency overhead.

The great advantage of MCM over FEM is that it alleviates
the requirement of a good-quality mesh. Moreover, the
proposed approach allows the automatic conversion of the
image data to a meshfree model. This one-to-one relationship
between the meshfree model’s field nodes and the image
data voxels allows for direct translation of the meshfree
model’s results to the image coordinates without requiring
any type of interpolation. Therefore, this action is free of
any interpolation-related error.

We believe that this approach may provide additional
value to in silico electrophysiology, especially for clinical
applications, since it does not require any feedback from the
user during the model generation and the simulation process.
Furthermore, it allows to associate simulation results with
image data heterogeneity as well as to interpret the results
directly on the medical image data, thus representing a highly
convenient approach to be used by physicians.
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