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Abstract— Electroencephalogram (EEG) signals have shown
to be a good source of information for emotion recognition
algorithms in Human-Brain interaction applications. In this
paper, a reproducible framework is proposed for classifying
human emotions based on EEG signals. The framework consists
of extracting frequency-dependent features from raw EEG sig-
nals to form a three-dimensional EEG image which is classified
by a convolutional neural network (CNN). The framework is
used to show that the 3D input CNN outperforms conventional
methods with two-dimensional input, using a public dataset.
The implementation of the framework is publicly available to
facilitate further work on this topic: https://github.com/
KvanNoord/3D-CNN-EEG-Emotion-Classification.

I. INTRODUCTION

Recognition of human emotion plays an important role
in intelligent Human-Brain interaction applications, such as
virtual reality, autonomous driving, educational systems, and
health care [1], [2]. For human interpretation, the main
source of information for emotion estimation is the facial
expression. However, it is known that some people can spoof
their facial expression at a certain emotion [2]. Therefore
this method is susceptible to fraud. More reliable sources
of information are needed for human emotion recognition.
One of these sources is the electroencephalogram (EEG)
signal, i.e. a recording of the electrical field of a brain that
represents different brain activities. The information from
EEG is favoured over other physiological signals for emotion
recognition because it comes directly from the brain [1], [3].

EEG signals have a complex nature and are easily dis-
torted. Therefore, the EEG-based emotion recognition is a
complex task. However, with the rise of machine learn-
ing (especially deep learning), the performance of emotion
recognition models is rapidly increasing. Multiple strategies
for emotion recognition have been proposed over the years,
where the successful models often use Convolutional Neural
Networks (CNNs) or Recurrent Neural Networks (RNNs).

In this paper, we propose a light-weight yet highly re-
producible EEG-based emotion recognition framework that
is made publicly available to facilitate the study in this
field. We evaluated the differences between the conventional
two-dimensional input representation and the new 3D input
representation as proposed by Yang et al. [3] on a public
dataset. Furthermore, we investigated various processing
techniques within the proposed framework (e.g. frequency
feature extraction methods, normalization techniques, CNN
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Fig. 1: Processing pipeline of the proposed framework for
EEG-based emotion recognition.

structures) and reported the insights that can further optimize
EEG-based emotion recognition.

II. MATERIALS AND METHOD

The processing pipeline of the proposed framework is
shown in Figure 1. The EEG-based emotion recognition is
separated into two parts. First, the emotion-related band fea-
tures are extracted from the EEG signals and formed in a 3D
representation. Secondly, a 3D-CNN classification algorithm
is developed to predict the emotion state (Low/High) based
on the input of 3D EEG-feature image.

The proposed framework is validated on the Database for
Emotion Analysis using Physiological Signals (DEAP) [4].
In the experiment of DEAP, physiological and multi-channel
EEG signals of 32 participants were recorded while watching
40 different music videos for 1 minute. During the video
watching, the participants were asked to rate each video
(on continuous 1-9 scale) in terms of 4 emotions: valence,
arousal, dominance, and liking. Especially the first two are
important for emotion classification, and therefore are fo-
cused emotion types in this work. Moreover, a 3-second pre-
trial was recorded for each trial, in which the subjects were
assumed to be in a low-emotional state. In DEAP, the EEG
signals of 32 different channels were recorded. The channels
were placed and labelled according to the International 10-
20 System, a recognized method for describing the location
of scalp electrodes in an EEG experiment [5]. For DEAP, a
pre-processed dataset is also provided, of which all steps are
explained in [4]. In the following subsections, we introduce
the proposed framework step-by-step.

A. 3D EEG-image generation

1.1 Frequency band features

For EEG processing, a meaningful feature extraction
method that extracts emotion-related information is desired.
The frequency spectrum of EEG signals can be divided
in separate bands, where frequencies in those bands are
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Band Frequency Brain state
θ 4 - 8 Hz Light sleep pattern
α 8 - 12 Hz Relaxing state
β 12 - 30 Hz Active thinking, focus, alert
γ > 30 Hz Cross-modal sensory processing

TABLE I: Bands in EEG frequency spectrum defined for
different emotions.

observed for different brain activities. The relevant bands
are shown in Table I. Based on these brain state descriptions,
emotions are observed mostly in the high frequency ranges,
which is also shown in previous research [3]. These four
bands are the basis of the two feature extraction methods
that are investigated in this research: power spectral density
and differential entropy. The first is a new simple approach
with some intuitive meaning, the second is giving best results
in earlier work [3].

• Power spectral density It involves the power of dif-
ferent frequencies. First, the power spectral density (PSD) is
estimated for the EEG-signal. Then the mean of the PSD in
the EEG frequency bands (as given in Table I) is calculated,
giving four feature values per EEG channel per signal.

• Differential entropy According to [3], [6], differential
entropy (DE) is an effective representation for EEG signals.
The DE h(X) of a random variable X is given as

h(X) =

∫
f(X) log(f(x))dx, (1)

where f(X) is the probability density function of the random
variable X . If EEG-signals are regarded as a random variable
over time, and the distribution is close to Gaussian due to
band-pass filtering [6], this simplifies to:

h(X) =
1

2
log(2πeσ2), (2)

where σ2 is the signal variance of a band-pass filtered signal.
First the signal is filtered for each EEG frequency band,
giving four different signals. Then, DE is calculated for each
signal, again giving four values per EEG channel per signal.

1.2 Feature normalization
To reduce inter-subject differences and improve general-

ization of the representation, we apply normalization to the
feature values. Two normalization methods are investigated,
the first one showed good results in earlier work [3] and the
second one is a new simple normalization technique.

• Pre-trial normalization Using the pre-trial signals pro-
vided in the DEAP dataset, pre-trial features are subtracted
from the trial features. This gives a normalized feature which
represents the difference between EEG-signals with and
without experiencing emotions. This type of normalization
was considered to improve the performance significantly [3].

• Self-normalization Since the neutral pre-trial may not
be always available (e.g. when there is no resting period
between trials), we investigate a second normalization tech-
nique: self-normalization. In this approach, we subtract the
feature vector (with 4 feature values estimated by PSD or
DE) by its average to make the feature vector zero-mean, thus
a relative power (of PSD) or entropy (of DE) is calculated.

Fig. 2: With the locations specified by the 10-20 International
EEG system, a sparse 9×9 matrix can be constructed.

Fig. 3: Example of four EEG images (corresponding to four
bands) where differential entropy is calculated from the EEG.

1.3 3D-input EEG image

For each EEG channel four feature values are obtained,
giving in total 32×4 feature values. If using 32×4 matrix as
the input of the algorithm for classification, the spatial in-
formation would be neglected. Therefore the channel feature
values are placed in a matrix according to the place of each
channel in the 10-20 International EEG system, as shown in
Figure 2. The EEG channel values in DEAP are represented
by red dots. With the use of spatial interpolation, the sparse
EEG images are converted to 20×20 non-sparse images.
Interpolation makes the model more robust: the images are
less susceptible to small deviations in the positions of the
electrodes. As there are four frequency bands, the input is a
2D matrix with four channels, thus a 3D cube.

With this 3D representation, EEG processing is similar to
image processing. In image processing, three color channels
(R, G, B) are used, wherein EEG processing four EEG-band
channels (θ, α, β, γ) are used. Another difference is that
EEG-images have a much lower resolution. For the upcoming
processing steps, EEG processing is considered as a low-
resolution image processing.

B. 3D-CNN based classification

Based on the aforementioned similarity to regular image
processing, a CNN with 3D-input EEG image is proposed
for classification. As a basic model, the CNN structure from
Yang et al. [3] is used. This CNN structure, consisting of 4
hidden convolutional layers and 2 fully connected layers, is
shown in Table II. The structure does not include pooling lay-
ers, as pooling is used to reduce the spatial dimension, which

213



Layer Size Output
Input (20×20)×4 -

2D Conv1 (4×4)×64 20×20×64
2D Conv2 (4×4)×128 20×20×128
2D Conv3 (4×4)×256 20×20×256
2D Conv4 (1×1)×64 20×20×64

Flatten - 25600
Fully connected 1024 1024
Fully connected 2 2

Softmax - 2

TABLE II: Structure of the used CNN model.

is not necessary here because the resolution of the EEG-
image is already low. All convolutional and fully connected
layers are followed by ReLU activation for nonlinearity and
Dropout layers to avoid overfitting. The goal of this work
is to verify if the approach with 3D EEG input outperforms
other 2D-input (channels, frequency bands) based methods.
This is achieved by changing all kernel sizes in the model of
Table II to 1×1. This leaves out the local spatial information
(neighbouring pixels) in the convolution and is therefore
similar to a conventional Neural Network (NN).

III. EXPERIMENTAL SETUP

All processing in this research is performed in Matlab,
with the use of two toolboxes: EEGLab [7], Deep Learning
and Parallel Computing [8]. A sliding window is used to
segment the 60 s signal (in one trial) into short intervals. The
sliding window approach involves two parameters: window
length and stride. An appropriate window length is deter-
mined by experiments, the stride was set to 0.25 s.

For training a model, all available data is separated into
5 chunks, and 5-fold cross validation is applied. The CNN
is trained using the Adam optimizer and cross-entropy loss.
Training is performed in mini-batches of 64 training samples
and is stopped if the validation accuracy stopped increasing
for 5 epochs. The CNN model is trained per subject indepen-
dently, as the EEG-based emotion recognition is too complex
and the differences between subjects are too large to train
a generalized model for all subjects. The performance per
subject is given as the mean of all 5 validation accuracies.
To emphasize on the difference between subjects, the perfor-
mance of models is presented as median with interquartile
range for all subjects.

IV. RESULTS

In this section, all the results are shown and discussed for
the valence and arousal class.

A. Sliding window length

The model performance is compared for different window
lengths for both the DE and PSD methods. The results for
the valence and arousal class are shown in Figure 4. For
both methods and both classes, the dependence is similar.
For small window lengths the amount of information that is
extracted is limited. By increasing the window length, the
performance increases up to a maximum around 3 - 7 s and
then decreases again for longer window lengths. Long win-
dows will include more distortions and are less responsive
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Fig. 4: Validation accuracies for PSD and DE features with
different sliding window lengths.

to spontaneous emotion-related frequency fluctuations. Based
on these findings, a window length in the range of 3 - 7 s
seems appropriate.

B. Feature extraction and normalization

The feature extraction methods and normalization tech-
niques as discussed in Section II are compared. Figure 5
shows that the normalization techniques do not improve
performance, contradicting to the results shown by Yang
et al. [3]. If no normalization method is used, both PSD
and DE seem suitable features for emotion recognition, but
the performance of the DE method is consistently higher
than the PSD method. Regarding the reproducibility, our
implementation is released for replicating this experiment
and comparison.

C. Kernel size

As the third experiment, the model is trained for different
sizes of the convolutional kernel applied in the convolutional
layers. Here the 1×1 kernel represent the conventional NN
without local spatial information. To compare our results
with a baseline method (i.e. not CNN-based), the results of
the Multinomial Logistic Regression (MLR) on this dataset
are also added. Figure 6 shows that the performance of our
proposed neural network structure is clearly better than a ba-
sic classifier. The poor performance of the basic classifier in
the arousal class also indicates the complexity of EEG-based
emotion recognition. Furthermore, the validation accuracy
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Fig. 5: Validation accuracies for PSD/DE feature for no
normalization, self-normalization and pre-trial normalization.
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Fig. 6: Validation accuracies for MLR and CNN with differ-
ent kernel sizes.

increases if the kernel size is increased from 1×1 to 4×4.
This means that the 3D EEG representation outperforms a
regular 2D representation (channel and band) that neglects
local spatial information. Further increasing the kernel size
increases the interquartile range (deviation) without signifi-
cantly improving the median accuracy.

V. DISCUSSION

The proposed method has shown to give decent results in
EEG-based emotion classification. Nevertheless, all results
in this work show that the EEG-based emotion recognition
is a complex task and the performance is highly subject-
dependent. Due to this issue, we consider the applicability
in real-life applications to be limited in this stage. The
model has to be trained on patient specific data, therefore
a preliminary stage in which patient data will be gathered is
necessary, which is time-consuming. The experiments show
that both power spectral density and differential entropy
are suitable for feature extraction, where the performance
of the differential entropy method is higher. However, the
normalization methods seem not improving the performance,
which is different from claims made by the previous research
[3]. The proposed 3D CNN structure outperforms simple
classifier and conventional NN structure. An important limi-

tation to take into account is the computational resource for
embedded devices, which could limit the usability in real-
time applications. For this reason, the proposed framework
is kept light-weight.

The methodology of the current work is similar to the
one of Yang et al. [3], but the reported high accuracies
in their work are not achieved. In other literature, classi-
fication accuracies above 80% are found [9], but only if
more complex models are used. We emphasize that the
implementation of our study is made publically available to
support the replication and comparison. For the future work,
we consider to use a memory-based network (e.g. RNN) on
top of CNN to improve the performance. As a second pos-
sible improvement, the subject normalization or calibration
technique could be investigated and its understanding should
be improved to eliminate the subject dependency of EEG
representations.

VI. CONCLUSIONS

With the proposed light-weight 3D-CNN framework, clas-
sification accuracy of EEG-based emotion recognition is
improved by using a 3D-input EEG image instead of regular
signal inputs. The 3D EEG image is obtained by calculating
features (e.g. power spectral density or differential entropy)
in the EEG frequency bands and using the spatial location of
the EEG electrodes. Due to the large inter-subject variation,
the emphasis in EEG-based emotion recognition lies on
generalization capability and the normalization/calibration
techniques should be further investigated to achieve a more
robust performance towards a subject-independent model.
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