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Abstract— Parkinson’s Disease is a neuropathy that produces
changes in several biomarkers, these changes could be used
to evaluate even sub–clinical conditions. This paper presents
an evaluation of indices extracted from electroencephalography
and Heart Rate Variability (HRV), when used to classify a sam-
ple of subjects from three groups: control (healthy), medicated
and non medicated subjects diagnosed with Parkinson’s disease.
Classification performance was measured using accuracy over
these classes and a cross validation scheme was used to assess
repeatability for the classification process. Results tend to
prove that inclusion of an autonomic index derived from HRV
analysis enhances classification, suggesting that Parkinson’s
disease could be related with unperceptible to mild alterations
of the Autonomic Nervous System.

I. INTRODUCTION

Parkinson’s disease (PD) is a neurodegenerative disorder
that alters the dopaminergic system [1]. In advanced stages
it produces motor symptoms (tremor) and diverse cognitive
impairments. Some hypothesis point to associate this neu-
rodegenerative process with alterations on the Autonomic
Nervous System (ANS), impacting on heart rate [2] and gait
patterns [3].

Supervised machine learning (ML) algorithms label new
unseen information based on data distributions derived from
prior information. This is a two step process: first, the
classifier is trained (calibrated) with labeled data producing a
model, and then, new data are assigned to a class according to
this calibration setup. The generated model describes a usu-
ally non–convex mapping, even delimiting non contiguous
regions. Despite the model used, for a reliable classification
process data must have differentiated distributions for each
class either in the original or transformed feature space. If
that condition is satisfied, then such features could be consid-
ered as a discriminative data descriptor. The Gaussian Naive
Base classification algorithm applies the Bayes’ theorem with
the “naive” assumption the distribution of the features is
Gaussian [4].

ML models for medical data are often used as a diagnostic
tool. For example, assuming two classes (healthy and dis-
eased), any physiological variable (like glucose concentration
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in blood, heart rate, blood pressure, etc.) that changes by
presence of illness is suitable to be considered as input
for ML. Because of the high complexity of the biological
systems, disease could produce non–evident and non–simple
changes on several of the observed variables.

In their literature review and meta–analysis about PD,
Boc̆ková and Rektor [5] considered EEG studies and ob-
served that β ([14-30]Hz) band shows an excessive syn-
chrony and also some alterations on γ ([30-100] Hz) on
cortical–sub-cortical loops. Melgari et al. [6] have shown
that levadopa (L-dopa) administration on Parkinson’s patients
produces significant increase over spectral power on β and
α ([8-14] Hz). They hypothesize that dopaminergic networks
are implicated on abnormal oscillatory patterns reflected
on such bands. Extending this idea, these alterations could
impact on the structure of several other networks like the
Central Autonomic Network (CAN) which contributes to
maintain homeostasis [7].

This paper presents an evaluation of the discriminating
power of diverse spectral features used to identify PD pa-
tients with and without L-dopa intake, and healthy controls,
from recordings in a publicly available EEG database [8].
The features were extracted from EEG and ECG signals
digitized during three minutes while in a resting condition.
The working hypothesis assumes that EEG features bring
information about cortical neurons, and from ECG, the HRV
patterns will incorporate information about ANS. Feature
pair selections among EEG and HRV measures were con-
ducted either separately per signal type or combined. The
features analyzed provide information about dynamics and
mean values of the EEG band power in several channels, and
HRV features come from different components to analyze
sympathetic and parasympathetic isolated contributions.

II. MATERIALS AND METHODS
A. Database

Data used was obtained from the “Resting State EEG
Data from Patients with Parkinson’s Disease” public dataset
collected at the University of San Diego and curated by Alex
Rockhill at the University of Oregon [8]. EEG and ECG from
14 subjects with Parkinson’s and 16 healthy subjects, all right
handed, 17 female, ages 50 through 82, were analyzed. Data
from Parkinson’s subjects were obtained on two sessions, On
and Off their medication, while healthy subjects (HC) just
went through one session. No specific tasks were performed
during sessions.
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Fig. 1. Preprocessing, feature extraction and classification pipeline. EEG features are measured from band power time series (BPts) over different bands,
while HRV features are determined as DFA estimates of the EMD decomposition of the interpolated RR series (details in the text).

All participants provided written consent in accordance to
the Institutional Review Board of the University of Califor-
nia, San Diego and the Declaration of Helsinki [9].

B. Signal processing and feature extraction

The ECG signal was processed following the QRS detec-
tion procedure described in [10], to obtain the RR interval
series. The HRV signal was then interpolated at a sampling
frequency of 10 sps using a cubic spline. The HRV signal was
decomposed into IMFs using the Empirical Mode Decompo-
sition method and lastly the Detrended Fluctuation Analysis
(DFA) indices were estimated for each IMF. DFA reflects
long range temporal correlation of a time series, it is based
on fractal analysis of time-series’ variance along several
windows of different lengths [11]. As a brief description,
if the DFA exponent is close to 0.5 the series corresponds to
white noise while values close to 1.5 indicate that the series
has a presumably brownian motion behavior.

From EEG signals the band power time series BPts
[12] were estimated for alpha ([8-12]Hz), beta ([14-30]Hz),
gamma ([30-100]Hz) and theta ([4-8]Hz) bands with a slid-
ing window of two seconds and a sliding step of 0.1 seconds
using Welch periodogram estimators. The BPts computation
consists of obtaining the signal’s power spectral density
and calculating the relative power for each frequency band,
therefore the BPts show the distribution of power according
to the time evolution of the components of the signal. The
DFA indices were estimated for the BPts of channels Fp1,
Fp2, F3, Fz, F4, C3, Cz, C4, P3, Pz, P4, O1, Oz, and O2.

C. Classification

Finally, for the classification task, a Gaussian Naive Bayes
algorithm was used from the scikit-learn implementation [4].
The features were evaluated in pairs following a greedy
strategy, random pairs of features were evaluated from the
sets: BPts dynamics, BPts mean values, and IMF dynamics.
Performance was evaluated with accuracy index in a 70%
training-30% testing, 15–fold cross–validation scheme . The
pairs of features were examined both in intra- and inter–
set combinations, but not in an exhaustive manner. After

some intra–set random choices, if band or dynamics did
not achieve reliable performance the set was discarded an
explored on inter–set evaluation.

Processing pipeline, from feature extraction to classifica-
tion is summarized in Fig. 1.

III. RESULTS

A one-way ANOVA test was run across groups: On,
Off and HC for the DFA values of the BPts of all bands
and all channels; none of the groups had a significantly
different population mean even though the On group tended
towards lower values. When combining two of these features
as inputs, the classifiers did not achieve an accuracy value
above chance, and therefore were no longer included in the
classification task.

When combining the mean BPts values across bands and
channels as input features, combinations with and between
beta channels achieved the highest accuracy values, followed
by theta, gamma and alpha respectively. The best classifica-
tion was achieved when using channels O1, Cz, Oz, C3,
O2 and P3, these channels and regions had been previously
identified as significant markers of PD [13].

When dynamics of the HRV components are used as
input features to the classification, and specifically IMF2, the
accuracy values for all cases was improved. It is important to
mention that due to the length of the recordings, IMF3 and
IMF4 should not be considered as reliable indices of sym-
pathetic or ultra-low frequency components. Nevertheless,
IMF2 power spectral density content corresponds mainly to
the low frequency band (LF, [0.04– 0.15]), known to be
linked majorly to the sympathetic branch of ANS activity.

Fig. 2 displays the overall best combination of features
and their distributions. The plots along the diagonal show
the marginal distribution for each group of the individual
features: mean BPts on beta for channels Cz, O1 and Oz
and the DFA values for IMF2 (IMF2DFA), respectively.
The heatmaps show the mean and standard deviation of
the normalized confusion matrices computed from 15–fold
cross–validation.
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Fig. 2. Overall best feature combinations found: mean BPts in beta for channels Cz, O1 and Oz and DFA values for HRV IMF2. The plots along the
diagonal show the marginal distribution for each group (On, Off and HC in blue, orange and green respectively) of the individual features. The scatter
plots show the distribution between each pair of features. The heatmaps show the mean and standard deviation of the normalized confusion matrices after
cross-validation.

IV. DISCUSSION
Fig. 2 shows how medication spreads beta BPts values

on all channels causing a larger variance on its distribution
with respect to the other groups (Off and HC), while also
right shifting its mean value. Despite this being a known
effect of the administration of medication, BPts DFA indices
showed no significant differences between groups. Maybe no
effect was found because of the small sample size rather than
because the HRV dynamic remains unchanged since, as seen
on Fig. 3, On group’s indices do tend toward lower values
and, possibly there are altered communication networks
when medication is administered. This in turn suggests that
the long range temporal correlations of central connections
are not a clear biomarker of the disease, even though L-dopa
administration seems to alter them.

Classification based merely on mean beta BPts between
channels tends to label all groups as HC. The fact that
BPts values on O1 of patients off their medication Off are

slightly less concentrated than those of HC helps alleviate the
confusion among these two groups, specially when combined
with the IMF2DFA values.

When considering two groups -healthy and diseased-,
these last two features (beta BPts on O1 and the IMF2DFA)
turn out to be the best to classify healthy and medicated
patients (HC and On) from the non-medicated ones (Off);
this consideration implies taking into account values labeled
accurately but also HC labeled as On and viceversa. On the
other hand, when considering the three groups individually
-therefore taking into account only the accuracy values- beta
BPts on Cz and the IMF2DFA indices are the best features
for classifying each group correspondingly.

On Fig. 2 the last column shows how the IMF2DFA
indices improve classification accuracy overall, suggesting
PD displays affectations on the ANS dynamic involved
with heart rate. The distribution of these values is similar
between patients on medication (On) and HC, since they
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Fig. 3. DFA estimates of the band power time series (BPts) over beta
band for each group (On, Off and HC)

both tend towards higher DFA indices, meaning the HRV
dynamic of the components related to sympathetic and
parasympathetic activity of these groups is more brownian
than the one of patients off their medication (Off). In other
words, administration of medication does seem to have a
long range temporal effect on the LF components of the
ANS, specifically on those impacting HRV. The fact that
including this index enhances classification, despite of the
feature it is paired with, suggests that PD produces sub–
clinical autonomic dysfunctions, given that patients off their
medication (Off) can be set apart based on their HRV
behavior.

It is of great importance to remark that the database
used is not very large therefore a greater set of patients
and HC would be required in order to confirm or rule
out these hypothesis. Also, longer recordings are needed in
order to analyze and determine whether ultra-low frequency
components related to cardiac activity and sympathetic ANS
activity are useful indicators of the disease. Future work
could include a stratified cross-validation scheme as well as
HRV-only classification.

V. CONCLUSIONS
Classification results show PD exhibits affectations on the

ANS activity related to the LF components that alter heart
rate. Beta band power is clearly affected upon medication
administration, nevertheless this effect seems not to display
modifications of the signal dynamics that could be used as
input features for the classification task. On the other hand,
medication does seem to alleviate the effects of PD on the
HRV LF dynamics, making this index a useful marker to
discriminate non-medicated Parkinson’s patients. It seems as
beta BPts mean value and dynamics of IMF2 relationship is
affected at the autonomic level after L-dopa administration,
particularly this relationship tends to be closer with the HC.
However further studies should be carried out in order to
learn more about the effects of Parkinson’s medication on
the ANS.
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