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Abstract— Brain-Computer Interface systems can contribute
to a vast set of applications such as overcoming physical
disabilities in people with neural injuries or hands-free control
of devices in healthy individuals. However, having systems that
can accurately interpret intention online remains a challenge
in this field. Robust and data-efficient decoding—despite the
dynamical nature of cortical activity and causality requirements
for physical function—is among the most important challenges
that limit the widespread use of these devices for real-world
applications. Here, we present a causal, data-efficient neural
decoding pipeline that predicts intention by first classifying
recordings in short sliding windows. Next, it performs weighted
voting over initial predictions up to the current point in time
to report a refined final prediction. We demonstrate its utility
by classifying spiking neural activity collected from the human
posterior parietal cortex for a cue, delay, imaginary motor
task. This pipeline provides higher classification accuracy
than state-of-the-art time windowed spiking activity based
causal methods, and is robust to the choice of hyper-parameters.

Clinical relevance— We have tested our decoder during de-
layed imaginary grasp tasks on data from the human posterior
parietal cortex—a relatively understudied region of the brain
thought to contribute to motor intention. Our results provide
new insight into the underlying neural dynamics of this region.
In fact, the most discriminating information—and the greatest
utility of voting—appear to occur during the early phases of
the task. This makes our approach most useful to short-latency
control of brain-computer systems such as neuroprosthetics.

I. INTRODUCTION

Brain-Computer Interface (BCI) devices have the potential
to effectively help with overcoming disabilities, especially
spinal cord injuries [1]–[9], or to enhance healthy individuals
with decoding nervous commands that can be used in differ-
ent applications such as hands-free control [10]–[16]. There
are, however, some major challenges to have BCI devices as
reliable solutions for real-world problems. A successful BCI
device to be used in real-world settings needs to provide
accurate predictions in a robust and reliable fashion; that
is, it needs to have high accuracy across different tasks
and in the presence of noise and artifacts (such as external
electromagnetic noise or motion artifacts) [10], [13], [17].
Additionally, ease of setting up and use are important factors
for having widespread BCI applications. Moreover, due to
the dynamical nature of the neural activity and challenges
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in collecting user/task specific neural data [1], [2], [7],
data-efficient learning of the decoding algorithm is also
a critical point in distinguishing a BCI device for real-
world applications. Although some of these challenges can
introduce inherent trade-offs (such as the signal quality vs.
invasiveness), it is important for a successful BCI system to
find ways to push the limits and provide accurate and reliable
predictions even when facing some of these challenges.

Implanted sensors have seen much attention during recent
years due to their ability in recording signals with high
spatiotemporal resolution and high Signal-to-Noise Ratio
(SNA) [1], [2]. Non-invasive methods might seem more
interesting at first since they do not need surgery for sensor
placements [13], [14], [17]; However, they face physical
limitations such as low SNR and interference between sig-
nals recorded from individual neurons (low spacial resolu-
tion) [14]. They also have to deal with motion artifacts [14]
and the recording headsets need to be set up on the user
before each use. Therefore, implanted sensors are a great
choice for an accurate and robust BCI system that offers
great mobility.

Regardless of the recording method, collecting neural
signals for a vast range of tasks is very challenging which
calls for data-efficient learning-based decoders. Also, due to
the highly dynamic nature of neural activities, parameters
of the estimation model that is fitted to the data will need
to be continually re-tuned. Although deep-learning methods
that use a large number of model parameters have shown
promising results in decoding offline datasets [18], [19],
currently, these methods are less attractive for real-time ap-
plications with a large repertoire of tasks. The data-expensive
and computationally heavy learning phase make them hard
to be trained and run in real-time. Also, they are not able
to efficiently generalize to a large number of tasks without
having access to considerable amount of data for each case.
Therefore, for general purpose online BCI applications it is
of great importance that the decoder can be tuned in a data-
efficient manner and can perform in a causal setting.

Here, we have proposed a data-efficient classification
pipeline that performs weighted voting across predictions
of different time windows of the recorded neural data and
has shown its state-of-the-art accuracy in classifying spiking
neural activity compared to not using the temporal informa-
tion (neural activity in prior time windows). Using sliding
windows, we first perform spike counting to transform spik-
ing neural activity into feature vectors. Next, for features
coming from each time window, we apply a classifier to
perform classification corresponding to that time window. We
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have studied two of the go to algorithms for the classifier:
the K-Nearest Neighbor (KNN; model-free) [1] and the
Poisson decoder (model-based) [4]. Next, we have performed
weighted voting in a causal fashion (from the beginning
of the recording to the current time) and have shown that
utilizing this temporal information using the voting layer
significantly increases the classification accuracy. We have
tested our proposed algorithm on recordings from human
Posterior Parietal Cortex (PPC), which is an area that has
recently attracted more attention due to its aptitude in con-
trolling neuroprosthetic devices and has exhibited promising
results in getting early and accurate classifications during
imagined motor tasks.

II. METHODS

A. Data collection and experimental setup

To test our proposed pipeline, we have used data collected
using a 96 channel UTAH array (Neuroport, Blackrock
Microsystems, Salt Lake City, UT) placed on the left anterior
intraparietal (AIP) area of the PPC of a male tetraplegic
human participant (E.G.S.) reported on [1]. Recorded raw
signals then used to perform spike sorting (using the first
two principal components of the detected waveforms) and
extract spiking activity. For each electrode, maximum of
two units were distinguished (using manually selected cluster
centroids) and all other signals were considered as noise
(maximum of 192 units in total). In total, the data consists
of 10 sessions with 50 trials in each session (10 per hand
shape).

The task consisted of three phases. During the first phase,
“Cue” (200 ms), one of the five symbols corresponding to the
task were shown to E.G.S. These symbols were: Rock, Paper,
Scissors, Spock, and Lizard. It was followed by the “Delay”
phase (1000 ms) during which, no symbols were shown
and E.G.S. was asked not to perform any tasks. Finally,
during the “Response” phase (2300 ms), E.G.S. was asked to
perform one of the five imaginary hand shapes corresponding
to the symbols he saw during the “Cue” phase. For further
details on the data-collection, pre-processing, and experiment
details, please refer to [1].

B. Feature extraction & Classifiers

For each unit and time window, the number of the spiking
activity for that window was selected and provided to the
classifiers as the feature vector to perform the classification
on. We have used a sliding window of 500 ms (width) with
sliding steps of 100 ms over the length of the experiment.
The classifier predictions for each sliding window were then
sent to the voter to perform the final prediction (see Fig. 1).
Alternatively, instead of incorporate temporal information by
having sliding windows and voting over their corresponding
predictions, we have also assessed the classification accuracy
when the window width is increased as time passes (instead
of the window sliding in time domain, the window extends
from the beginning of the experiment to the time of predic-
tion) which we refer to here as the cumulative window (see
Fig. 2). In this case, all of the temporal information for each

unit is smashed into one single feature (spike count number)
and no-voting layer was used for this case.

We have used two of the commonly used classifiers in the
state-of-the-art online BCI studies for implanted electrodes:
KNN decoder (model free) [1] and Poisson decoder (model
based) [4]. For either of the classifiers, we use an 80% train,
20% test split.

a) KNN classifier: Feature vectors of length 192 (total
number of spiking for each unit in that time window) were
fed into the classifier and its class was predicted by its
proximity (Euclidean distance) to the samples in the training
data. Similar to [1], we have used a KNN classifier with K =
4. In an event of a tie, the closest neighbor’s vote was used
as the tiebreaker.

b) Poisson classifier: For each unit and time window,
average spiking across the feature vectors (of length 192)
of training data were used as the lambda (λ) parameter (ex-
pected number of spikes on that unit and during that specific
time window) for the underlying Poisson distribution. The
probability of having class Ck for the trained Poisson naive
Bayes classifier is defined as:

p(Ck|x) =
p(Ck)p(x|Ck)

p(x)
(1)

where p(Ck) is the prior probability of class Ck and p(x) is
the probability of the evidence (the feature vector). Since the
prior probability of each class is equal in our case, we can
rewrite (1) as:

p(Ck|x) = α

192∏
i=1

p(xi|Ck) (2)

where α is a constant equal to 1/p(x) and i is the unit index.
Based on (2) and by applying the Maximum A Posteriori
(MAP) decision rule, the predicted class (Ĉp) is calculated
as:

Ĉp = argmaxk∈[1,5]

192∏
i=1

p(xi|Ck) (3)

Please note that since the prior probability of each class
is the same, MAP estimation will transform into Maximum
Likelihood Estimation (MLE).

C. Voting layer

Once we have the prediction for each time window up to
the current time, we can look back and create a weighted
polling between the prediction of each sliding window to
determine and report the final predicted class. As seen on
Fig. 1, we multiply outputs of the classifiers for each sliding
window by their corresponding weight and send them to the
voter. The voter will then report the most frequent (after
incorporating weights) prediction as the final prediction.
Please note that in the case of all weights being equal, the
voting layer will be equivalent to a causal majority voter.

The next question is how to select these weights and how
they will affect the final prediction. To study this problem, we
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Fig. 2. Spike counting using the sliding window and cumulative window
methods.

have selected a number of weight sets (Fig. 3) and reported
the results for each. The studied weights on this paper are
as follows:

a) Uniform: In this case, all weights are equal which
turns the proposed weighted voting into a simple causal
majority voter.

b) Ramp function: In this weight set, there is a linear
relationship between weight value and its time index (dis-
counted in time as we move toward more prior samples).
An offset was also added to all weight values to make sure
weights do not start from zero and therefore smoothens the
differences in their ratios.

c) Gaussian curve: This weight set is very similar to
the ramp function in implementation and rationale, however,
instead of a linear function, here we have used the Gaussian
distribution curve to form the weight.

d) Overall accuracy-based weights: The idea behind
this weight set is to have higher weights for the areas that
are expected to provide more accurate predictions. Therefore,
we have performed an offline classification across all data
and calculated the overall accuracy. This accuracy will be
an indicator of how trustable each time window will be in
informing the real intended hand gesture (class). Therefore,
the overall accuracy curve can be a great candidate for
being used as the voting-weights. Please note that since this
pattern is relatively consistent across all experiments, there
is no need for recalculating this pattern for each recording
which will introduce anticausality. Simply having access to
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Fig. 3. Different voting weight sets studied in this paper.

a training dataset or utilizing prior information about the
expected accuracy vs. time pattern would be enough for a
reasonable assumption of the overall accuracy-based weights.

III. RESULTS

Results using either classifier (KNN and Poisson) were
similar and generally followed the same patterns. There-
fore, here we have mainly reported the results from the
pipeline using one of them (KNN) and provided a complete
report of results for both classifiers in the supplementary in-
formation (available at https://github.com/marjanin/
weighted_voting_BCI).

Fig. 4a shows the performance of the weighted voting-based
classifier averaged across all sessions for all studied weight sets
(color coded). Also, we have applied one-way ANOVA analysis
on average (over time) accuracy values of all sessions across the
weight sets which shows there is no significant difference between
outcomes of different weight sets. This result is encouraging in
that it shows minimal dependence of the proposed method to the
selection of weight. However, what really matters is the comparison
of the proposed method versus the without voting (and especially
with the sliding window case which does not incorporate temporal
information from previous time spans).

Fig. 4b shows the performance of the weighted voting classifier
(with accuracy-based weights) in green and predictions without the
proposed voting layer (sliding window results), in dark blue. As
can be seen on Fig. 4b, accuracy curves have a very similar start
but as we go forward in time, the accuracy of the no-voting curve
starts to decline whereas the accuracy of the proposed voting-based
decoder keeps climbing. We start seeing this divergence between
the two curves starting around 500 ms.

As discussed in the methods section, to have an alternative
approach on utilizing temporal information across the entire trial,
we have also introduced the idea of the cumulative window where
we use a single window that extends from the beginning of the
experiment to the time of prediction and reports the cumulative
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all recording sessions.
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(a)

(b)

Cue Delay Response

0

0.2

0.4

0.6

0.8

1 p-value for accuracy-based weighting vs. sliding window
p-value for accuracy-based weighting vs. cumulative window
p-value = 0.05 line

-0.5 0 0.5 1 1.5 2 2.5 3 3.5

0

0.2

0.4

0.6

0.8

1

p-
va

lu
e

p-
va

lu
e

time (s)

Fig. 6. p-value curves of the one-way ANOVA analysis across sessions
for each time-point between voting-based (accuracy-based weighting) and
no-voting (sliding window) accuracy values and between voting-based
(accuracy-based weighting) and cumulative window accuracy values for the
entire trial (a) and the response phase only (b).

number of spikes to the classifier (smashing all spikes across the
time domain). Since in this approach, time history is accounted
for by extending the window, we will not have a voting layer on
this approach. The accuracy curve of this approach is also shown
on Fig. 4b in light blue. As you can see, in general, the voting-
based approach still shows superior performance compare to this
approach. Nevertheless, we were surprised by the high accuracy of
this approach since by smashing all temporal information into a

single feature (cumulative number of spikes), this method cannot
entertain any temporal distinctive aspect of the data.

Fig. 4c shows box plots of mean accuracy for all of the curves
shown on Fig. 4a and Fig. 4b. across all sessions. In addition,
we have performed One-way ANOVA analysis of these mean
accuracy values across sessions. We found statistical significance
(p < 0.05) between all proposed approaches that utilize past history
versus the no-voting sliding window approach with accuracy-based
weighing being the most significant one (please see supplementary
information for more details and the interactive multiple comparison
of means user interface). Also, the time discounted weights show
relatively lower average accuracy values compared to the other two
toward the end of the experiment.

It is important to note that in Fig. 4 results, both voting based
and cumulative window methods utilize temporal information by
having access to all different phases of the experiment (cue, delay,
and imagined motor response); this means that the decoder can
potentially utilize information in earlier phases (such as the visual
information) to form the final prediction for the imaginary motor
response. For real-world applications, however, it is also important
to have a high accuracy decoder when only having access to
the motor phase (since voluntary movements are not necessarily
preceded by a visual cue). For this reason, we re-ran analysis
reported on Fig. 4 on only the imagined motor response phase
(1200ms - 3500ms of the experiment). This means that the data
recorded in the cue and delay phases (0 ms - 1200 ms) had no
contribution in the predictions. The results are reported on Fig. 5.

Similar to the results shown on Fig. 4, Fig. 5 shows that the
effects of changing the voting weights are relatively insignificant
(with accuracy-based and uniform weights still having higher per-
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formance toward the end compared to the time discounted ones;
Fig. 5a) and both methods utilizing time history (voting-based
and cumulative window) outperform the sliding window method
(Fig. 5b). Box plots of mean accuracy for all of the curves shown
on Fig. 5a and Fig. 5b. across all sessions are also shown on Fig. 5c).

Furthermore, we also performed One-Way ANOVA analysis for
accuracy values across sessions for each time-point between voting-
based (accuracy-based weights) and no-voting sliding window
accuracy values and also between voting-based (accuracy-based
weights) and cumulative window accuracy values. The results of
these analyses for the entire experiment (corresponding to Fig. 4b
curves) and the response phase only (corresponding to Fig. 5b
curves) are shown on Fig. 6a and Fig. 6b, respectively. Fig. 6a
shows that the accuracy of the weighted voting-based method
(with accuracy-based weights) is significantly higher (statistically
significant with p < 0.05) than the traditional no-voting based
sliding window method (starting around 700 ms till the end of the
experiment; black line) and than the cumulative window method
(starting as early as the end of the cue phase–200 ms–but becoming
less significant towards the end of the experiment–after around 2500
ms; blue line). Fig. 6b also shows that the differences between
the voting-based and sliding window methods are significant (after
early predictions: once we get more voters involved; black line).
In this case, both approaches that utilize time history (voting-based
and cumulative window; blue line) are resulting in similarly high
accuracies (not a statistical significance in the deference).

IV. DISCUSSION

We present a causal, data-efficient and accurate spiking neural
decoder for BCI that utilizes weighted voting across prior time
windows to estimate motor intention. We demonstrate it has better
performance compared to classifiers that do not include long-
term time history (longer than the window of interest) information
in current predictions (e.g., [1] and [4]). By incorporating time
history (both voting-based sliding windows and cumulative window
approaches), as opposed to analyzing each time window indepen-
dently, we show significant improvement in prediction accuracy (see
Fig. 4, Fig. 5, and Fig. 6).

The modular nature of our pipeline enables us to inherent
the advantages of the classifier of choice. In particular, we used
two popular classifiers (KNN and Poisson) that are very data-
efficient compared to some other alternatives such as data-heavy
deep learning models [20]. That is why, for each session, we were
able to provide high accuracy with around only 140 seconds of
training recordings (80% of the available 175 seconds of data from
fifty trials each lasting 3500 ms). Moreover, since the voting layer
does not require an additional learning/training phase, the proposed
voting based method inherits the data-efficiency of the classifier.

Computational cost is also an important factor for practical real-
time BCI applications, and the weighted voting layer adds minimal
additional computational overhead. Specifically, for each class, N
sliding windows add N multiplications, N(N +1)/2 summations,
and one categorical argmax operation (see Fig. 1).

Another important aspect of our BCI pipeline is its relative
insensitivity to the specifics of the classifier or voting weights. We
implemented two commonly used classifiers (KNN and Poisson)
and four different sets of voting weights, and demonstrated high
performance in all cases. Moreover, although we reported the results
for a 500 ms window width, we also used other window widths
between 400 and 1000 ms and did not see major changes in perfor-
mance. Similarly, in the KNN algorithm we used k values between
three and six without observing major changes in performance. Note
that this sensitivity analysis was made possible by the modularity
of our pipeline that also enables easy switching between alternative
feature extraction methods, classifiers, and voting weights.

A high rate of improvement of prediction accuracy (reaching
to high accuracy in early phases) is the goal of on-line BCI

applications such as neuroprosthetic control to reduce the decision-
to-action delays. Importantly, the weighted voting classifier is able
to make accurate predictions early on in both the entire trial (Fig. 4b,
Fig. 6a) and in the response phase only (Fig. 5b, Fig. 6b). Also
note that at -500 ms, when the decoding window does not overlap
with the experiment at all, as expected, all accuracy curves start
from around 20% which is the chance level (five classes with equal
priors).

A potentially surprising finding was the high accuracy of the
cumulative window approach (i.e., where the classifier compares
windows of increasing length, all sharing the same initial time
point), as one would expect it to wash-out important distinctive tem-
poral information. This is likely because most of the discriminative
information is available early in the task (see Fig. 4b and Fig. 5b
where the accuracy curves start rising early on during the trial and
start going down for the sliding window method and flatten for the
other two around 2 seconds). Moreover, the cumulative window
had a relatively worst performance on the entire trial (Fig. 4b-c)
compared to the response phase only (Fig. 5b-c). One potential
explanation for this drop in the performance can be the changes
in the dynamics of the neural activity across different phases (Cue,
Delay, and the Response). Some of the distinctive temporal features
specific to each phase might have been washed out using the
cumulative bin approach, however, this was not significant enough
to substantially impact the decoding process since it was still able
to provide reasonable accuracy (Fig. 4b-c). We interpret these
observations as a possible consequence of the brain region from
which we recorded. In fact, these results can be supporting evidence
of the role of PPC in generating motor intention—as opposed to
other areas such as premotor and motor cortices (e.g., PMd, M1) [1],
[2], [7], [21]. It is therefore of interest to repeat this analysis with
signals from those other areas to further reveal the distinct roles
different cortical areas play in the generation of motor intention vs.
motor planning vs. motor execution.

Another potentially fruitful follow-up study would be to assess
the performance of this pipeline in experiments where the par-
ticipant changes their motor intention midway through the task.
We would expect that the sliding window approach without voting
would be the least disrupted in case of a change in the intention
midway in the trial and the quickest to adapt as it is the least
dependent on prior temporal information (although it might still
have lower accuracy values before the change in the intention
compare to the other methods incorporating temporal information).
Cumulative method might be the most susceptible to error or
delayed adaptation in this case since it will neither throw out or
reduce the weight of the prior information (before the change in
the decision). We hypothesize that the weighted voting method
using weight sets that prioritize the most recent time windows might
have better performance in these cases compared to the cumulative
window or other weight sets, however, a more complete evaluation
needs to be able to fully assess performance of each approach,
which is beyond the scope of this study and can be a good avenue
for future research.

V. CONCLUSION

Supported by the results reported here, we believe that the
proposed data-efficient, causal spiking neural decoding pipeline can
greatly improve the state-of-the-art performance in BCI algorithms
for neuroprosthetic control by increasing reliability early on, and
decreasing delays in the decoding process.

SUPPLEMENTARY INFORMATION

The code and the supplementary files can be accessed through
project’s Github repository at:
https://github.com/marjanin/weighted_voting_
BCI
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