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Abstract— During pressure support ventilation, every breath
is triggered by the patient. Mismatches between the patient and
the ventilator are called asynchronies. It has been reported that
large numbers of asynchronies may be harmful and may lead to
increased mortality. Automatic asynchrony detection and clas-
sification, with subsequent feedback to clinicians, will improve
lung ventilation and, possibly, patient outcome. Machine learn-
ing techniques have been used to detect asynchronies. However,
large, diverse and high-quality training and verification data
sets are needed. In this work, we propose a model for generating
a large, realistic, labeled, synthetic dataset for training and
testing machine learning algorithms to detect a wide variety of
asynchrony types. Next to a morphological evaluation of the
obtained waveforms, validation of the proposed model includes
a test with a machine learning algorithm trained on clinical
data.

Index Terms— patient-ventilator interactions, asynchronies,
pressure support ventilation

I. INTRODUCTION

Mandatory positive pressure mechanical ventilation is a
form of life support. It is difficult to optimize the ventilator
settings for a patient and ventilator-induced lung injury
remains a major concern. When there is a spontaneous
breathing effort, support modes may be used whereby the
patient can control tidal volumes. In the pressure support
mode (PSV), the patient triggers each breath and the ventila-
tor supports this effort by a positive pressure during the inspi-
ration phase. Mismatches between the patient’s effort and the
mechanical ventilator support are called asynchronies. A high
rate of asynchronies is associated with adverse outcomes
such as an increased mortality [1]. However, the detec-
tion, classification and resolvement of these asynchronies is
challenging for bedside ICU clinicians, even for the more
experienced ones. Besides, continuous monitoring of the
mechanical ventilation is not feasible in clinical practice.

Many studies have been conducted on the detection of
asynchronies [1]. Especially neural networks provide an
interesting opportunity to elevate the quality of automated
asynchrony detection and incorporate more types of asyn-
chronies [2]. However, studies suffer from having too little
data to improve training, testing, and comparison of these
machine learning algorithms, since a large, diverse, labeled
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dataset is not available. Ideally this dataset would contain
data of patients with different types of respiratory diseases,
from different hospitals, measured with different types of de-
vices, and would include different types of asynchronies. At
the moment, obtaining such a dataset is difficult since manual
labeling and advanced monitoring are required, which is
time-consuming, operator-dependent, and prone to errors.

We propose to use a model-based approach to generate a
diverse synthetic dataset including pressure, flow and tidal
volume curves of a diverse ICU population during PSV.
Generating a synthetic dataset or augmenting a dataset with
synthetic data to help training and testing of machine learning
algorithms is well known in other fields [3].

We study the feasibility of generating a suitable dataset us-
ing a physiological model that is similar to Bates’ model [4]
and comprises the main features that are needed to model
pressure, flows and tidal volume curves. The original model
has parameter sets for four healthy individuals, we use
measured lung/airway parameters obtained in clinical studies
to hand-tune the parameters to model different lung dys-
functions. We add a simple mechanical ventilator model that
incorporates the main features to model waveforms at the
airway opening. We validate the results by comparison with
measured data, feedback from one of the authors, and reuse
of a machine learning algorithm trained on clinical data to
test the validity of the model.

II. METHODS
A. Patient model

Multi-compartment lung models are an option to model
lung heterogeneity, however the determination of a large
number of parameters is a challenge. Therefore, we selected
the advanced non-linear one-lung model of Athanasiades
[5] which was validated using data obtained during forced
inspiration and expiration tests on healthy test persons. This
model is an extension of the model of Bates [4] and includes
turbulence, nonlinear models for resistances and volumes,
peripheral airway collapse and visco-elastic tissue properties.
Model parameters for patients with different disease types
were chosen such that calculated total airway resistance,
lung-chest wall volumes and compliances agree with mea-
sured clinical data of the relevant patient groups. Note that
the same one-lung model of Bates was used in many clinical
studies to extract the above parameters.

The model (see Fig. 1) consists of three variable resis-
tances modeling the upper airways (Ru), collapsible airways
(Rc), and small airways (Rs).
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Fig. 1. The lung model which is an adapted version of [5]. Note that
the components have nonlinear dynamics and are coupled with each other
through these dynamics.

The resistance of the upper airway is given by a nonlinear
flow dependent Rohrer resistor, which accounts for the
turbulence:

Ru = Au +Ku | V̇cw |, (1)

where Au is the linear resistance of the upper airways, Ku

is a constant, and V̇cw the airflow rate. The resistance of the
collapsible airway varies with the volume of the collapsible
airway segment Vc, and is given by:

Rc = Kc(Vcmax/Vc)
2, (2)

where Kc is a constant and Vcmax is the maximum volume
of the collapsible airways.

The resistance of the small airways captures the depen-
dency of the small airway resistance on the lung volume Vl

[5]:
Rs = Ase

Ks(Vl−RV )/(V ∗−RV ) +Bs, (3)

where As, Ks, Bs, and V ∗ are constants and RV is the
residual volume of the lung.

The variable capacitor Cc models the compliance of the
collapsible airway segment. In Athanasiades et al. [5], this
is modeled by a piece-wise continuous function. We replace
this function by a completely continuous and twice differen-
tiable function, which has the same (sigmoidal) shape in the
physiological region:

Vc = Vcmax/(1 + e−Ac(Pc−Bc))Dc , (4)

where Vcmax is the maximum volume of the collapsible
airways, Ac, Bc, and Dc are patient dependent constants
and Pc is the pressure over the capacitor Cc.

Ccw is the compliance of the chest wall, and the volume
is modeled by:

Vcw =
TLC −RV

0.99 + exp −(Pcw−Acw)
Bcw

+RV , (5)

where TLC is the total lung capacity, RV the residual
volume, Pcw the pressure in the chest wall and Acw and
Bcw are patient dependent constants.

For diseased persons, the original equation for Vl in [5]
does not describe the lung volume. Instead, we employ the

exponential curve determined empirically by Venegas et al.
[6] which is valid for multiple types of patients, and use this
equation:

Vl = Al/(1 + e−Bl(Pt−Dl)) , (6)

where Al, Bl and Dl are patient dependent constants and Pt

is the transmural pressure. Together with Cl, the linear Cve

and Rve form a nonlinear kelvin body that mimics the visco-
elastic properties of the lung. Cve and Rve are constants and
are chosen in such a way to resemble available literature.

Pmus describes the effect of the respiratory muscle activity.
The last modification consisted of adding the voltage source
PipPEEP and a very high resistance Rd, to ensure correct
initial conditions.

The model originally came with parameter sets of four
healthy individuals fitted to experimental data. We hand-
tune ten new parameter sets for each individual representing
four lung dysfunctions (Obese, ARDS, COPD and idiopathic
fibrosis) with three different disease severities for ARDS
and COPD, and two types of severity for obesity, resulting
in 40 new parameter sets. Model parameters are changed
such that airway resistance, lung and chest wall compliance
and lung volumes are in line with available data. The most
important changes we made to model these diseases, can be
summarized as follows:

• In obesity, due to closure of the peripheral airways and
due to the diaphragm being pressed in cranial direction
in supine position, the lung volumes are lower, therefore
the lung and chestwall compliance is also reduced. The
upper airway resistance is strongly increased mostly due
to increased turbulence.

• For ARDS patients, we use the “baby lung concept”. RV
and TLC are strongly reduced, and the airway resistance
moderately increased.

• COPD is characterized by high airway resistance and
low lung elastic recoil. This results in high compliance
of the lung tissue and high lung volumes. The expiratory
resistance is much higher due to excessive central
airway collapse during expiration.

• In idiopathic fibrosis, the lung tissue has low compli-
ance (stiff). RV, FRC, and TLC are all lower compared
to healthy individuals. Airway resistance is smaller or
comparable to healthy.

B. Ventilator model

The ventilator model is shown in Fig. 2. The model
ventilator has ideal pressure sources. The impedance of the
ventilator tubing is modeled with a RLC lumped element
model, the resistance is modeled using Rorher’s equation.

The pressure and flow are measured near the airway
opening, before the Y-piece. The flow dependent resistance
of the tubing is often higher than the airway resistance. For
this reason, the pressure drop over the tube resistance is very
important for modeling the specific waveform characteristics
at the airway opening.
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Fig. 2. Equivalent circuit of the ventilator model. Note that the endotra-
cheal tube and the resistances modeling the tubing system are not simple
resistances.

C. Validation methods

To test whether the model parameters are tuned correctly,
we compare Rinsp, Rexp, compliances and lung volumes in
the model, to values encountered in literature. RV and TLC
can directly be observed from the model parameters. FRC
can be calculated by calculating the volume at Pl + Pc =
−Pcw. We define Rexp and Rinsp as the sum of Ru, Rc, and
Rs during expiration and inspiration. Ctot is calculated by
taking the slope of the combined lung-chestwall pressure-
volume curve of the model at FRC. We report the values
using zero end-expiratory pressure (ZEEP), except for COPD
where we report the values using PEEP and Pinsp.

After this, the patient-ventilator circuit is implemented in
LT Spice XVII [7]. Triggering and cycling is done within
the LTSpice simulation. Triggering was done at 1-2 cmH2O
below PEEP. Cycling off is done a a fraction of peak
inspiratory flow (range 10-80 percent).

The input muscle waveform Pmus is generated by MAT-
LAB R2019b [8]. Pmus is a rounded trapezoid with a
different rising and falling edge. By varying Pmus, the rise
and fall times, and the patient type, we were able to generate
different types of asynchronies naturally in our data: delayed
inspiration (DI, the ventilator triggers too late), late cycling
(LC, the ventilator cycles too late), early cycling (EC, the
ventilator cycles too early), and ineffective efforts (IE, the
ventilator does not trigger). The amplitude was in the range
5-10 cmH2O except for the delayed trigger and ineffective
efforts where average values 4 cmH2O and 2 cmH2O were
used respectively. Typical rise and fall times were 0.5 s
and 0.3 seconds. For the delayed trigger and early cycling
breaths longer rise times, up to one second, were used.
The maximum amplitude and rise and fall times are as
observed in clinical data. Breathing rates, start time of a
breath, muscle pressure, rise and fall times and PEEP and
maximum ventilator pressure were given random variations.
White low-pass filtered noise (BW 15Hz) was added to the
simulated waveforms.

Using this method a synthetic dataset with more than
300.000 breaths is created, the breaths are automatically
annotated since the timing of the patient and ventilator are
saved. A subset of this dataset is checked visually whether
important features are present and compared to clinical data.
The clinical data was obtained after cardiac surgery (no
lung diseases reported) [9]. The experimental procedures for
collecting this clinical data were approved by the Institutional

Review Board.
In the first test using machine learning, a subset of 5000

breaths is randomly selected. We apply the machine learning
algorithm proposed in [10] to the subset. The algorithm is
a modified version of the u-net architecture that is trained
on a small annotated clinical dataset. The goal of the
algorithm is to find the timing of the start and end of patient
inspiration. The machine learning architecture obtained high
performance when it was trained and tested on the same
clinical dataset, however, it is unclear how well it generalizes
when it is applied to a different dataset.

III. RESULTS

Table I shows the range of Rinsp, Rexp, Ctot, and the
lung volumes reported in literature for the different disease
archetypes (the target values) and values obtained from the
model. The model is sufficiently close to the target values
for our application, and for the next validation step the
waveforms are studied.

Fig. 3 provides a comparison of clinical waveforms of
a patient with normal lungs after cardiac surgery [9], and
four simulated patient archetypes with various types of asyn-
chronies. The cycling threshold in the simulations is slightly
wrong, such that asynchronies are present. The features in
the figure correspond well to clinical data.

The machine learning algorithm detected the start of
patient inspiration with a median error of 0.19 s, the detection
of the end of patient inspiration had a median error of 0.44
s. The algorithm detected whether patient effort was present
with 0.99 precision and a recall of 0.973.

IV. DISCUSSION AND CONCLUSION

In this study, we presented a model-based method based on
a previously validated lung model for healthy test subjects,
adjusted it for the main disease archetypes, combined it with
a new ventilator model, to automatically generate annotated
PSV waveforms.

We started by creating more parameter sets than the
original four that were provided. Table I shows that the new
parameter values show sufficient correspondence to the target
values found in literature.

Fig. 3 shows that the simulated waveforms are very close
to the clinical waveforms and show the most important
features of the diseases and asynchronies. The increase
in pressure during inspiration is caused by the decreasing
inspiratory flow. This causes the flow dependent resistance of
the tubing to decrease, which leads to an increase in pressure
at the airway opening. The flow has a rounded peak, which
is one of the signs that patient effort is present. Expira-
tory flow limitation (EFL) and airtrapping are observed in
obese and COPD simulations. ARDS and especially fibrosis
show features of archetypes with low compliance, low lung
volumes, low resistance and stronger and longer duration
inspiratory effort: the flow rises and decays faster than in
other archetypes. In the simulations IE, LC, and DI emerged
more often in obese and COPD archetypes. EC was more
observed in ARDS and fibrosis archetypes. This corresponds
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TABLE I
COMPARISON OF TARGET VALUES OF LUNG VOLUMES, CTOT AND RESISTANCES IN LITERATURE TO MODEL VALUES

Normal Obese ARDS COPD Fibrosis
Target Model Target Model Target Model Target Model Target Model

RV (L) 1.2 1.6±0.4 0.5±0.3 0.35±0.05 0.5±0.2 0.044±0.004 f(height,age) 3.3±0.08 1.1±0.2 1.25±0.15
FRC at ZEEP (L) 2.4 3.2±1.2 1.1±0.3 1.3±0.3 1.3±0.3 1.6±0.5 >normal 4.6±0.6 1.6±0.2 1.9 ±0.2
TLC (L) 6.0 6.7± 1.5 5.1±1.5 5.2±1.2 4.8±1 5.4±1.2 2*RV 6.6±0.4 3.4±0.3 3.25±0.15

Rinsp (cmH2O/L/s) 2±1 3±1 6±2.5 7±1 5±3 6.3±1 7.5±2.5 6.5±2.5 2±1 2.1±0.1
Rexp (cmH2O/L/s) 2±1 3±1 6±2.5 7±1 5±3 6.3±1 15±5 14±6 2±1 2.1±0.1
Ctot at FRC (L/cmH2O) 0.15±0.05 0.15±0.05 0.1±0.05 0.06±0.01 0.045±0.02 0.044±0.004 >0.15 0.165±0.03 0.025±0.01 0.029±0.03

Fig. 3. The column on the left shows a clincal waveform of normal pulmonary function during PSV [9]. It includes an ineffective effort (IE). The
remaining four columns show the simulated waveforms for obese, ARDS, COPD and idiopathic fibrosis archetypes. They also show early cycling (EC),
late cycling (LC), ineffective effort (IE) and delayed inspiration (DI).

to clinical observations. During LC after the rounded peak
in the flow, the flow starts decreasing exponentially. This is
a sign that the patient has stopped inspiration, and thus that
the ventilator cycles too late. This is both observed in the
simulations and in clinical data. The EC asynchronies show
the typical flow characteristics for EC when the maximum
of the patient effort lies after the cycling time. IE show
the typical drop in the pressure waveform and rise in flow
waveform, that are caused by a breath of the patient that is
not sufficient to reach the trigger threshold of the ventilator.

The first tests to identify the patient inspiration in the sim-
ulated waves using machine learning, give excellent results.
The machine learning algorithm trained on clinical data, was
able to recognize most patient inspirations in the simulated
data with high precision. Especially IE were difficult to
detect, and sometimes skipped. Also a combination of DI
and EC was hard to detect, since this type of breath was
not present in the clinical training set. These results indicate
the feasibility to use a synthetic dataset to augment clinical
patient-ventilator waveforms.

In future work, a survey will be conducted amongst
experienced intensivists, to check whether they are able to
distinguish the clinical data and simulations. The impact of
including the synthetic data during the training phase of a
machine learning algorithm for asynchrony detection will be
investigated. The model will also be used to test and validate
(new) methods relevant for lung protective ventilation.
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