
  

Abstract— Calcium imaging has great potential to be applied 
to online brain-machine interfaces (BMIs). As opposed to two-
photon imaging settings, a one-photon microendoscopic imaging 
device can be chronically implanted and is subject to little 
motion artifacts. Traditionally, one-photon microendoscopic 
calcium imaging data are processed using the constrained 
nonnegative matrix factorization (CNMFe) algorithm, but this 
batched processing algorithm cannot be applied in real-time. An 
online analysis of calcium imaging data algorithm (or OnACIDe) 
has been proposed, but OnACIDe updates the neural 
components by repeatedly performing neuron identification 
frame-by-frame, which may decelerate the update speed if 
applying to online BMIs. For BMI applications, the ability to 
track a stable population of neurons in real-time has a higher 
priority over accurately identifying all the neurons in the field of 
view. By leveraging the fact that 1) microendoscopic recordings 
are rather stable with little motion artifacts and 2) the number 
of neurons identified in a short training period is sufficient for 
potential online BMI tasks such as cursor movements, we 
proposed the short-training CNMFe algorithm (stCNMFe) that 
skips motion correction and neuron identification processes to 
enable a more efficient BMI training program in a one-photon 
microendoscopic setting. 
 

 

I. INTRODUCTION 

Brain-machine interface (BMI) is a cutting-edge technique 
that enables communication between humans and their 
surroundings. By recording and decoding the brain signals, 
BMIs can restore lost physical movements, recognize speech 
patterns, and enhance vision and hearing. As a bridge between 
the brain and neuroprosthetic devices, BMIs rely on decoding 
algorithm to learn and interpret the recorded signals. 
Electrophysiology techniques are typically used to record 
action potentials (“spikes”) in BMI paradigms. Despite the 
prevalence of use in BMI decoders, however, 
electrophysiological recordings have several limitations [1]. 
First, the neural activity is sparsely sampled and the number of 
isolated neurons is typically limited to the number of electrode 
contacts. Second, the recorded spikes can be prone to signal 
contamination by neighboring neurons. This problem is even 
exaggerated if the brain region of interest is structured with 
densely packed cells. Third, the spiking data provide little 
information about cellular identity. Even though waveforms of 
spikes can be used to give some confidence in uniqueness of 
identity and perhaps basic cell-type classification, such as 
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excitatory versus inhibitory neurons, it is still not capable of 
informing with certainty the identity of neurons and 
physiological details of recorded units. Moreover, spiking data 
cannot provide spatial profiles of the region of interest even 
with the help of a stereotaxic instrument. These drawbacks 
have emphasized the importance of techniques other than 
electrophysiology.   

Calcium imaging, an alternative optogenetic technique, is 
a powerful tool to optically interrogate neural activity at 
cellular and subcellular levels. Supported by the development 
of transfection techniques, calcium imaging can selectively 
image over an entire population of neurons with clear contours 
of microstructures and can longitudinally track individual 
neurons over time. Two-photon calcium imaging has rendered 
fruitful research outcomes in both rodents and non-human 
primates (NHP) [2], [3]. Despite its power, the study of BMIs 
using calcium imaging is still in its infancy [4], [5]. To date, 
two-photon calcium imaging data was successfully leveraged 
to decode movement direction in NHPs such as marmosets [6] 
and even rhesus macaques [7].  

However, two-photon calcium imaging suffers from 
several disadvantages [8], including (1) higher infection risks 
during implantation and throughout experiments, (2) the daily 
manual alignments of the microscope for a consistent field of 
view, and (3) the physical constraint to the subject’s brain. 
Most of these disadvantages can be easily resolved by 
replacing the two-photon microscope with a miniature one-
photon microscope. The nVista (Inscopix, Inc., Palo Alto, CA) 
is a light-weight microscope which can be easily attached to a 
chronically implanted microendoscopic probe. This one-
photon microendoscopic setting provides a much lower risk of 
infection and is compatible with the subject freely behaving 
without head restraint. Since the device is chronically 
implanted, the daily alignment procedure can also be bypassed. 
Therefore, one-photon microendoscopic calcium imaging 
holds great potential to be applied to BMIs, but this important 
research topic has not yet been explored. We implanted a 
gradient-refractive index (GRIN) lens in the dorsal premotor 
cortex of a rhesus macaque’s brain that can image deeper 
cortical tissue and connect with a miniature microscope [8]. 
Here, we process the one-photon microendoscopic calcium 
imaging data with our proposed stCNMFe algorithm. We 
report the preliminary performance of stCNMFe by comparing 
the neuronal identification results with CNMFe. This research 
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is a cornerstone for applying one-photon microendoscopic 
calcium imaging to BMIs. 

II. MATERIALS AND METHODS 

A. Experimental Subjects 
The rhesus macaques were obtained from the California 

National Primate Research Center (CNPRC) at UC Davis. The 
study used two healthy adult male monkeys at 5-8 years of age 
and weighing 13-14 kg. Animals were housed at the CNPRC 
at UC Davis. All experiments were conducted in compliance 
with the NIH Guide for the Care and Use of Laboratory 
Animals and were approved by the Institutional Care and Use 
Committee at the University of California, Davis. 

B. Microendoscopic calcium imaging 
To enable calcium imaging using a microendoscopic one-

photon microscope in a behaving rhesus macaque, we injected 
a virus to the brain in order to express GCaMP and chronically 
implanted a microendoscopic gradient-refractive index lens 
for the microscope to access the same region as the injected 
virus. We used two different adeno-associated viral (AAV) 
strategies for expressing GCaMP. The first one was the 
conventional AAV (AAV1.CaMK2a.GCaMP6f) that was 
proven effective for GCaMP-based two-photon calcium 
imaging in macaque models [9]. The second one was an AAV 
Tet-Off viral system, which includes the mixture of an 
tetracycline transactivator (tTA) protein (AAV5.Thy1s.tTA) 
and a tetracycline responsive GCaMP component 
(AAV5.TRE3.GCaMP6f) [10]. The Tet-Off system resulted in 
higher levels of expression as compared to the conventional 
virus and can be temporarily suppressed by the administration 
of tetracycline or its derivatives, such as doxycycline.  

The GRIN prism lens (1 mm diameter, 9 mm length 
Proview Integrated Prism Lens; Inscopix, Inc.) was inserted to 
2 mm below the cortical surface after a linear incision in the 
targeted cortex. A side-view imaging plane was then attached 
to the end of the lens, and an integrated microscope baseplate 
was securely attached as a docking station for the miniature 
microscope. The final lens implants were secured with a 
customized cranial chamber with a removable cap and were 
completely sealed with cement and acrylic, minimizing the 
risk of infection and the effort of maintenance.  

Beginning two weeks following the lens implantation 
surgery, calcium imaging was performed in the awake and 
behaving macaque, typically multiple times per week. The 
animal sat comfortably in a standard primate chair and was 
restrained temporarily to remove the chamber cap in order to 
plug in the miniature microscope and the data acquisition 
system. After the cap was removed, the baseplate is clearly and 
easily revealed so the miniature microscope can be docked to 
the station with a single screw. The animal was then placed in 
a chair with neck plates and the calcium imaging initiated. 
During the imaging sessions, the animal was completely free 
to behave without head restraint, including reaching, directing 
the positions of the head, and chewing. 

C. Short-training CNMFe 
To infer neural activity from calcium imaging data, a 

constrained nonnegative matrix factorization (CNMF [11], or 
CNMFe [12] for microendoscopic settings) method is 
commonly used. CNMFe can simultaneously identify the 

source of neurons, separate spatially overlapping components, 
denoise, and deconvolve the spiking activity. The 
spatiotemporal calcium dynamics can be seen as the product 
of two matrices: one that represents the location of the neurons, 
and the other that characterizes the temporal dynamics of 
corresponding neurons. Unlike traditional Independent 
Component Analysis approach, a nonlinear method such as 
nonnegative matrix factorization can better recognize 
overlapping components in space. By analyzing the calcium 
dynamics with CNMFe, we can obtain the estimated contours 
for all neurons identified by CNMFe and the corresponding 
fluorescent traces, which can further be correlated with other 
experimental setup such as eye saccade or hand movements. 

The CNMFe algorithm can be streamlined into four 
separate steps, including spatial filtering, motion correction, 
source extraction, and an optional deconvolution process. For 
one-photon microendoscopic calcium images, the spatial 
filtering is essential because the images are not optically 
focused to a thin plane as specialized in two-photon imaging. 
The spatial filtering can effectively reveal the spatial features 
that are candidates for neurons. The motion correction relies 
on the NoRMCorre algorithm that corrects non-rigid motion 
artifacts by splitting the field of views into overlapping patches 
and then merging by smooth interpolation after registering 
separately [13]. In the source extraction step, each source of 
neurons can be seen as a product of two matrices: one that 
describes the spatial footprints of the source and the other that 
describes the temporal traces over time. Typically, the CNMFe 
framework can be mathematically described as Equation (1), 
where 𝑌 ∈ 𝑅!∗# is a matrix that represents the observed data: 
d is all the observed pixels, and T is the number of time points 
(frames). 𝐴 ∈ 𝑅!∗$ is the spatial information of the N neurons 
in the field of view, and 𝐶 ∈ 𝑅$∗# is the temporal profile of 
corresponding neurons. 𝐵  represents the background 
fluctuation and E is the noise term. 

 𝑌 = 𝐴𝐶 + 𝐵 + 𝐸  (1) 

Our goal is to find the matrices A and C by minimizing the 
Frobenius form of residual sum of squares (Eq. 2) with some 
constraints to 𝐴 , 𝐵 , and 𝐶 . The matrices 𝐴  and 𝐶  are 
nonnegative because of the physical properties of these 
variables. It is also common to enforce sparsity constraints by 
penalizing the norms of spike counts matrices [11]. 
Constraints on the matrix B marks the main difference 
between CNMF and CNMFe. Instead of modeling 𝐵 as a rank-
1 nonnegative matrix, CNMFe decomposes the background 
fluctuation into two separate terms: fluctuating activity and 
constant baselines [12]. 

 ‖𝑌 − (𝐴𝐶 + 𝐵)‖%&    (2) 

As a batched processing method, CNMFe requires access 
to the entire set of data for processing. In order to enable 
frame-by-frame online operation, stCNMFe is proposed in this 
study. We used a brief snippet of imaging data taken from the 
beginning of recording session, usually between thirty seconds 
and two minutes in length, as short training dataset for CNMFe. 
The cellular contours are identified and used as the templates 
for fluorescence intensity extraction in the testing phases (the 
remainder of the imaging recording session). In the test dataset, 
we skip the redundant cellular identification process and the 
motion correction process due to the stability of the implant. 

5861



  

Since we use less data for training, it is expected that some 
neurons are not initially identified by this model. However, 
this cost comes with the gain of rapid, online detection of a 
stable population of neurons. We hypothesized that the stable 
recordings can guarantee sufficiently reliable identification 
results to enable online BMIs. 

III. RESULTS 
For this work, we present results from five representative 

sessions of recorded calcium imaging data (612±66 second, 
mean ± std) that was acquired at 20 frames per second over 
three separate days. Each session is preprocessed by spatial 
and temporal downsampling followed by a bandpass spatial 
filter.  

We first characterized the performance of CNMFe on these 
data by determining the cellular contours of neurons identified 
by CNMFe and the corresponding fluorescence traces over 
time in four example neurons (Fig. 1). The background in 
Figure 1(a) is the max-correlation image where the value for 
each pixel represents the correlation between the pixel and its 
eight neighbors. It is calculated for each 1000 frames across 
time and then the maximum correlation of that pixel will be 
taken. This method enhances the active neurons while 
suppressing background fluctuation and noises [14].  

 
Figure 1. Representative performance of CNMFe. The white contours in (a) 
represents the identified neurons and the black circles are the center of mass. 
The traces in (b) represent the normalized fluorescence intensities across time 
in four example neurons labeled in (a). 
 

We visualized the cellular contours of each identified cell 
in an example stCNMFe (Fig. 2a, stCNMFe trained by a 1.5-
minute video) and CNMFe (Fig. 2b) models. Red contours in 
both figures are mutually identified, and the black contours are 
either false positive (Fig. 2a) or false negative (Fig. 2b). The 
fluorescence traces of one example neuron pointed by the blue 
and red triangles are shown in Figure 3. The upper figure 
showed the normalized fluorescence intensity of that neuron 
captured by stCNMFe and CNMFe, and the bottom figure 
showed the absolute difference between the two traces (Fig. 3). 
In this specific example, the trace from stCNMFe resembles 

the one from CNMFe, indicating the contour is nearly 
identically depicted by both models. It also confirms the 
stability of the microendoscopic implant, proving that motion 
correction is not required in this setting. The blue trace only 
has minor fluctuation in the testing phase due to the 
micromovement of the brain. However, the overall calcium 
dynamics of this neuron had been successfully captured by a 
training set that lasted for only 90 seconds. These results 
support our hypothesis that training on a short video may be 
sufficient to extract cellular components and corresponding 
neural activities for a BMI decoder. 

 
Figure 2. Example contours identified by (a) stCNMFe and (b) CNMFe. Both 
models are trained by the same recording session, except the stCNMFe is 
trained by the first 90 seconds of data. Red contours are mutually identified 
cells. 

 
Figure 3. Normalized fluorescence traces of the labeled cell in Fig. 2 by 
stCNMFe and CNMFe. The dashed line marks the end of training phase. 

Next, we benchmarked the identification efficacy and 
accuracy of stCNMFe as a function of the length of short-
training videos (Fig. 4). The identification efficacy is defined 
as the number of neurons identified by stCNMFe divided by 
the number identified by CNMFe based on the whole batch of 
data. It represents how effective the stCNMFe model can 
extract neurons from a short video. The identification accuracy, 
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on the other hand, is the number of cells mutually identified by 
stCNMFe and CNMFe, which describes how accurate this 
model can identify the true labels. The stCNMFe model 
trained using only two-minute videos can identify more than 
46% of the cells accurately (N = 22.6 neurons, the orange bar 
of 120 seconds in Fig. 4), while the stCNMFe models trained 
by only one-minute videos can still correctly locate 31% of the 
cells (N = 15.0 neurons, the orange bar of 60 seconds in Fig. 
4) on average. BMIs using electrophysiology recordings in 
NHPs typically use cells as few as 15, and as many as 100 or 
more [4], [15], [16], demonstrating the potential of our method 
to sufficiently identify populations of neurons that can be used 
in online BMIs. We also evaluate the identification efficiency 
as the number of neurons identified divided by the time for 
training (Fig. 5). These results show that stCNMFe is 
significantly more efficient than CNMFe when using one to 
two minutes of training videos (F_4,20=7.79, p<0.001; one-
way ANOVA, post-hoc Tukey’s honest significance 
difference (HSD) test). 

 
Figure 4. Identification efficacy and accuracy of stCNMFe as a 
function of the length of short-training videos. “ALL” represents 
training on the entire video (a.k.a. CNMFe). Error bars for all figures 
are standard deviations. 

 

 
Figure 5. Identification efficiency of stCNMFe as a function of the length of 
short-training videos. Significant differences are shown as follows: *p < 
0.05, **p < 0.01, and not significant if not indicated. 

CONCLUSION 
This study demonstrates the concept that one-photon 

micro-endoscopic calcium imaging data have the potential to 
be applied to online BMIs. By using stCNMFe, neurons can 

be effectively and efficiently identified compared to 
traditional CNMFe. For further exploration, our results 
suggested that only a short-training session is required for a 
BMI task. Although the model may not identify every neuron 
in the field of view, it does identify a large portion of neurons 
matching or exceeding the number necessary for BMIs and 
can do so in real-time. 
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