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Abstract— One of the critical components of robotic-assisted
beating heart surgery is precise localization of a point-of-
interest (POI) position on cardiac surface, which needs to be
tracked by the robotic instruments. This is challenging as the
incoming sensor measurements, from which POI position is
localized, might be noisy and incomplete. This paper presents
two Bayesian filtering based localization approaches to local-
ize POI position online from sonomicrometer measurements.
Specifically, extended Kalman filter (EKF) and particle filter
(PF) localization algorithms are explored to estimate the state
of POI position. The estimations of upcoming heart motion
generated by the generalized adaptive predictor, which is
demonstrated in the authors’ past work, are also incorporated
to generate an improved motion model. The proposed methods
are validated with prerecorded in-vivo heart motion data.

I. INTRODUCTION
In the robotic-assisted beating heart surgery, robotic in-

struments replaces the conventional surgical tools and are
under direct control of the surgeon through teleoperation
[1]. The tools need to track a fast moving target with very
high precision and cancel the relative motion between the
surgical site on the heart and the surgical instruments. Thus,
the surgeon operates on the heart as if it is stationary.

An essential aspect of the proposed concept is accurate
localization of the point-of-interest (POI) on cardiac surface
from the noisy sensor measurements, which are gathered
by using a position tracking sensor. For precise motion
tracking, it is important to provide clean POI position data
to the control algorithms. Earlier studies in robotic-assisted
heart surgery employed optical [1]–[4] and ultrasonic [5]–[7]
position tracking sensors for the localization of POI position.
Sonomicrometer is the choice of position tracking sensor in
this study just as in the case of authors’ past work [8].

In this paper, a probabilistic formulation of the problem
of robust online POI position localization is presented. The
problem is studied by utilizing extended Kalman filter (EKF)
and particle filter (PF) localization algorithms. Proposed
framework aims to localize POI position from the sonomi-
crometer measurements. First, heart motion is modeled as
Brownian motion and then approximated by a harmonic
motion model. The estimations of upcoming heart motion
generated by the generalized adaptive predictor (introduced
in [8]) are also employed for an improved motion model
to enhance localization accuracy. The probabilistic measure-
ment models account for the noise in the sonomicrometer
data. The proposed methods are evaluated by simulation
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studies with prerecorded in-vivo heart motion data. This
study extends authors’ previous work [9] on probabilistic
heart motion measurement with sonomicrometer by employ-
ing the adaptive filter predictions in the motion model.

The remainder of this paper is organized as follows. The
formulation of the problem of POI position localization from
sonomicrometer data is briefly described in Section II. The
Brownian, harmonic, and improved motion models as well
as the probabilistic measurement model are explained in
Section III. The EKF and PF localization algorithms are
introduced in Section IV. The results and discussions are
presented in Section V. Finally, conclusion and possible
future extensions are given in Section VI.

II. PROBLEM FORMULATION

A sonomicrometer accurately measures the distances
within the moving soft tissue via ultrasound signals by a set
of small piezoelectric crystals. Each sonomicrometer crystal
can alternate between transmitting and receiving ultrasound
signals. The distance between a pair of transmitting and
receiving crystals are computed by measuring the time of
flight of the sound wave. In measuring in-vivo heart motion,
one crystal is sutured next to the POI and three or more
crystal are placed on a rigid base forming a reference
coordinate frame. The localization problem is formulated as
computing the three-dimensional (3D) configuration of the
crystal next to POI (with respect to the reference coordinate
frame) from the measured distances between the crystal next
to POI and the base crystals [10]. Fig. 1 provides a graphical
schematic of the localization problem. This configuration
yields ten different distance measurements with half of them
being repeated measurements of the others.

The instantaneous 3D triangulation method, provided by
sonomicrometry sensor system (Sonometrics, Inc. ON, CA)

Distance measurements between the base crystals
and crystal next to POI: {z1, z2, · · · , z10}.
3D positions of the crystals with respect to the
reference coordinate frame: {c1, c2, · · · , c6}.

Fig. 1. POI localization problem: Five crystals are placed on a rigid
base forming a reference coordinate frame and a sixth crystal is
sutured next to POI on a beating heart. The localization algorithms
take distance measurements between the POI and the base crystals,
and infer POI position with respect to reference coordinate frame.
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performs online POI localization without any cleaning on
the incoming sonomicrometer measurements. The system
provides offline filtering. Yet, this is not feasible for in-vivo
motion tracking; as sonomicrometer data must be processed
online. As the channel measurements are not processed
online in instantaneous triangulation, the existing noise in the
data are incrementally reflected on the localized POI position
as shown in Fig. 2. In this study, Bayesian state estimation
algorithms are employed to remedy this problem and localize
the POI position in a robust, online fashion.

III. PROBABILISTIC MOTION AND MEASUREMENT
MODELS

Kalman and other Bayesian filters for state estimation em-
ploy probabilistic models of the process and the measurement
[11]. In this work, 3D POI position is the dynamic system
state. Process model represents the POI motion and describes
how the current system state evolves from the previous state.
Measurement model describes how a sonomicrometer mea-
surement is generated given the system state. This section
describes the probabilistic motion and measurement models
used in the EKF and PF localization algorithms.
A. Motion Model

Three different process (i.e. POI motion) models are used
that provide different levels of a priori information about the
heart motion.

1) Brownian Motion Model: The POI is assumed to be
undergoing a Brownian random motion in this model. The
state at time t consists of the 3D coordinates of the POI
position and is of the form: qt = [xt, yt, zt]

T . Then, system
is modeled as:

qt+1 = qt + ε, (1)

where ε is drawn from a multivariate normal distribution,
N (0,Σ) with the process covariance Σ ∈ R3×3 is a diagonal
matrix.

2) Harmonic Motion Model: The heart motion is primar-
ily the superposition of two effects: breathing motion and
heart beating motion. Here, by utilizing the quasiperiodic

Fig. 2. (a) The online unfiltered and offline filtered sonomicrometer
measurements between POI and 4th base crystal. (b) z-coordinate
of the resulting 3D Positions via sonomicrometer triangulation.

nature of the heart motion [8], POI motion is approximated
by a 2nd-order compact Fourier series with constant offset,
which considers only the main mode and first harmonic of
breathing and heart beating motions. For a single coordinate
of POI position this approximation is given as:

uyt = C0 +

2∑
m=1

Cbmcos(mwb0t+ θbm)

+ Chm
cos(mwh0

t+ θhm
),

(2)

where C0, Cbm , θbm , Chm , θhm are respectively the constant
offset, the corresponding coefficients, and phases of breath-
ing and heart motion components. wb0 = 2πfb0 and wh0

=
2πfh0

are the angular frequencies of the main modes of
breathing motion and heart beating motion. Fig. 3 shows
z-coordinate of POI motion and its harmonic approximation.
At time t, the update equations of the heart motion and its
harmonic approximation are given by:

pt+∆t = pt + ∆pt, (3)
ut+∆t = ut + ∆ut, (4)

where pt, ut,∆pt,∆ut ∈ R3×1 are respectively the ac-
tual heart motion, its harmonic approximation, and their
corresponding increments. The above approximation allows
the increment, ∆pt, to be also approximated by ∆ut;
∆pt ≈ ∆ut. Then, system is modeled as:

qt+1 = qt + ∆ut + εr, (5)

where εr is drawn from a multivariate normal distribution,
N (0,Σr) with the process covariance Σr ∈ R3×3 is a
diagonal matrix.

3) Generalized Adaptive Predictor as Motion Model: A
possible way to improve motion model is using the one-
step estimates obtained by the generalized adaptive predictor,
which recursively generates the best estimate of the next
observation, given only current and past observations [8]. At
time t, the update equation of the generalized motion model
can be expressed as:

∆gt = gt+1 − gt, (6)

where gt+1 is the one step prediction generated by the
adaptive predictor and gt = qt, current state. The process
model is given by:

qt+1 = qt + ∆gt + εg, (7)

where εg is drawn from N (0,Σg) with the process covari-
ance Σg ∈ R3×3 is a diagonal matrix.
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B. Measurement Model
The sonomicrometer is susceptible to a peculiar form of

error caused by the crystal geometry, obstruction of ultra-
sound transmission paths, and ultrasound echo effects [10].
The proposed measurement model captures these possible
sources of error.

The ideal (noise-free) sonomicrometer measurements for
each of the measurement channels zi are given by the system
state and base crystal positions as:

hi(qt) = ||qt − ci||,
ẑit = hi(qt),

(8)

where ci’s are 3D coordinates of base crystal positions
with respect to reference coordinate frame and hi(qt) is the
distance between the POI crystal and the ith base crystal
at time t. Then the measurement error, αt = zt − ẑt
yields the sonomicrometer measurement model, where zt =
{z1
t , · · · , znt } is the set of sensor data at time t with n

is the number of measurements (Fig. 1). The measurement
likelihood is given by:

p(αt) = p(zt|qt). (9)

The small measurement error caused by crystal geometry
can be approximated by a narrow Gaussian noise distribution,
psmall(zt|qt) ∼ N (µ, σ2) with mean, µ, and variance,
σ2. The random unexplained noise, which describes the
ultrasound echoes, is modeled using a uniform distribution,
prand(zt|qt) ∼ U(αmin, αmax), spread over the entire error
range. These two different distributions are combined via
a weighted average, defined by the parameters wsmall and
wrand with wsmall+wrand = 1. The weights are determined
according to the frequency of the error values for the
corresponding distributions.

p(zt|qt) =

(
wsmall
wrand

)T
·
(
psmall(zt|qt)
prand(zt|qt)

)
. (10)

IV. LOCALIZATION ALGORITHMS
In this section, EKF and PF localization algorithms for

estimating POI position from sonomicrometer measurements
are presented. The major advantage of the PF over the EKF
is PF can incorporate non-Gaussian noise models, while EKF
assumes Gaussian noise models. PF also approaches to the
optimal Bayesian estimate, if the posterior distribution of the
state is represented by sufficiently large number of particles,
which makes it more accurate than EKF. However, the EKF
is computationally very efficient compared to the PF.

Algorithms 1 and 2 show EKF and PF localization algo-
rithms with harmonic motion model. Both algorithms are
adapted from the generic EKF and PF algorithms [11].
The algorithms with the Brownian and generalized motion
models are analogous and omitted due to space constraints.
For these models, changes are made by incorporating the
appropriate process models (i.e. (1) and (7)) to Lines 2-3 in
Algorithm 1 and Lines 4-5 in Algorithm 2.

V. RESULTS AND DISCUSSION
The localization performances of the proposed models and

algorithms are evaluated with a 60 seconds constant heart

Algorithm 1 EKF algorithm with harmonic motion model. µt

and Σt are the mean and covariance that represent the belief of
POI state at time t. Σr ∈ R3×3 and Q ∈ Rn×n are respectively
process noise and measurement noise covariance matrices. n is the
number of sonomicrometer measurements at time t.
1: function POILOCALIZATIONEKF(µt−1,Σt−1,∆ut,zt)
2: µ̄t ← µt−1 + ∆ut

3: Σ̄t ← Σt−1 + Σr

4: Kt ← Σ̄tH
T
t (HtΣ̄tH

T
t +Q)−1

5: µt ← µ̄t +Kt(zt − h(µ̄t))
6: Σt ← (I −KtHt)Σ̄t
7: return µt

Algorithm 2 PF algorithm with harmonic motion model. Xt =
{q[m]

t ,m = 1 . . . N} is the set of particles that represent the belief
of POI state at time t. N is the total number of particles.
1: function POILOCALIZATIONPF(µt−1,Xt−1,∆ut,zt)
2: X̄t,Xt ← ∅
3: for m = 1→M do
4: sample r

[m]
t ∼ N(0,Σr)

5: µ̄
[m]
t = µt−1 + ∆ut + r

[m]
t

6: w
[m]
t ← p(zt|q[m]

t )

7: X̄t ← X̄t + 〈q[m]
t , w

[m]
t 〉

8: Xt ← LowVarianceSampler(X̄t)
9: µt ← E[Xt]

10: return µt

rate motion data collected at a sampling rate of 404 Hz
from a calf model, where absolute sonomicrometer accu-
racy is 250 µm [8]. The breathing (fr0 ) and heart beating
components (fh0 ) respectively have fundamental frequencies
of 0.16 Hz and 1.63 Hz, corresponding to 98 beats/min. The
peak-to-peak amplitude of the POI motion is 7.33 mm, with a
RMS value of 3.51 mm. The offline 3D triangulation method
provided by the proprietary software of the sonomicrometry
system, which filters and cleans the online recorded sonomi-
crometer data, is also used to localize POI position. These
values were used as the ground truth localization (referred
as POISono from here on) as currently we do not have
an independent set of sensor measurements (such as from
a vision sensor) that can be used for the validation purposes.

The model parameters used in the two localization al-
gorithms are selected empirically. In the EKF algorithm,
the measurement noise covariance Q is a diagonal matrix
with all values set to 0.1. To model the psmall and prand
in (10), first ideal sonomicrometer measurements for each
channel are calculated from POISono and base crystal
positions via (8). Measurement errors are computed between
the ideal sonomicrometer measurements and online recorded
sonomicrometer data for each channel. Measurements errors
of individual channels are concatenated to get a normalized
error histogram of the system. A normal disitribution is
fitted to histogram to get psmall(zt|qt) ∼ N (0.3, 0.02)
and a uniform distribution is fitted to entire error range to
get prand(zt|qt) ∼ U(−2, 8) (Section III-B). Corresponding
weights of the distributions in the measurement model are,
wsmall = 0.95, wrand = 0.05. Fig. 4 shows the resulting
distribution for the current data set.

In Brownian motion model, the process covariance matrix
Σ is set by finding the variance of the displacement distance
between subsequent positions of the POISono. This results
in diagonal values [0.35, 0.41, 0.03]. In harmonic motion
model, Σr is set by finding the variance of the displacement
distance between subsequent positions of the approximation
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Fig. 4. Density distribution of the noise model superimposed on
the normalized error histogram.

error; i.e. rt = pt − ut via (3), (4). This results in diagonal
values [0.35, 0.42, 0.03], and in generalized motion model
Σg is set empirically with diagonal values [0.28, 0.30, 0.03].

The results are given in Table I. In the PF algorithm, 1000
particles are used to represent belief of the POI location and
the algorithms were run 10 times with the worst results are
reported. The root-mean-square (RMS) errors are calculated
from the 3D distance between the POI position estimated
by the proposed algorithms and POISono. The RMS error
between POISono and online unfiltered POI positions from
sonomicrometer is also given as reference. Localization
results for the y-coordinate of the POI position by EKF
algorithm with harmonic motion model is shown in Fig. 5.

The results show that the proposed algorithms were able
to localize POI position accurately. In all experiments, PF
outperformed EKF and employing harmonic motion model
yielded better results than the Brownian motion model. This
is no surprise since the harmonic approximation includes
significant information about the state of the POI. Motion
model based on the generalized adaptive filter also enhances
the performance of the algorithms with Brownian motion
model. Improved localization accuracy is expected as one-
step predictions are based on current and past observations,
and the motion model that integrates these predictions em-
bodies information about the state of the POI. Fig. 5 shows
the proposed models can accurately capture the sources of
error in the sonomicrometer. Thus, localization algorithms

TABLE I. RMS POI Localization Errors
Localization Results RMS Localization Error [mm]
Online Sonomicrometer POI 135.11
EKF with Brownian Model 1.38
EKF with Harmonic Model 1.32
EKF with Generalized Model 1.22
PF with Brownian Model 1.14
PF with Harmonic Model 1.05
PF with Generalized Model 1.08
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Fig. 5. Shows y-coordinate of the POI position estimated by
EKF with harmonic model and POI position estimated by offline
triangulation; POISono.

can filter noisy sonomicrometer measurements and yield
precise POI position estimates.

VI. CONCLUSIONS
This paper presents the formulation of a framework for

the localization of a POI position on cardiac surface from
sonomicrometer measurements. In the proposed framework,
POI motion is modeled by different approaches and the
uncertainties in the sonomicrometer are explicitly considered
using a probabilistic formulation.

The results indicated that the proposed motion and mea-
surement models were able to capture POI motion and un-
certainties in the sonomicrometer accurately. The localization
algorithms were also able to estimate POI position precisely.

Future works include a real-time implementation and a
hardware validation of the proposed algorithms using data
from a complementary sensor, e.g., a vision based sensor
system, as the baseline truth.

Although it is not addressed here, computational load
of the algorithms is another point of discussion. The EKF
algorithm processes the 60 seconds heart motion data ap-
proximately in 0.6 seconds, whereas the PF algorithm with
1000 particles processes approximately in 3000 seconds.
EKF is computationally much more tractable despite PF
provides better localization results. The required speedup can
potentially be achieved by employing parallel processing as
PF algorithms can be trivially parallelized. A multi-threaded
implementation can also provide additional speedups.
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