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Abstract— Aortic dissection (AD) is a rare but potentially
fatal disease with high mortality. The aim of this study
is to synthesize contrast enhanced computed tomography
(CE-CT) images from non-contrast CT (NCE-CT) images for
detecting aortic dissection. In this paper, a cascaded deep
learning framework containing a 3D segmentation network
and a synthetic network was proposed and evaluated. A
3D segmentation network was firstly used to segment aorta
from NCE-CT images and CE-CT images. A conditional
generative adversarial network (CGAN) was subsequently
employed to map the NCE-CT images to the CE-CT images
non-linearly for the region of aorta. The results of the
experiment suggest that the cascaded deep learning framework
can be used for detecting the AD and outperforms CGAN alone.

Clinical relevance— This work provides a novel framework to
synthesize CE-CT images from NCE-CT images and concludes
a criterion to detect aortic dissection using the synthesized
images.

I. INTRODUCTION

AD is a rare but life-threatening disease that has many
complications [1]. It is associated with a high mortality of
1% per hour in untreated patients. Misdiagnosis of AD is
devastating to the patients [2].

Accurate diagnosis of AD is an essential step for making
correct treatment decisions to increase the patient’s chance of
survival. Contrast enhanced computed tomography (CE-CT)
is the first line technique widely used in detecting AD. As
the X-ray decay coefficient of the contrast medium is much
higher than that of the vessel wall, the aorta after injecting
contrast medium becomes much brighter than vessel wall on
CE-CT image. This makes the dissection symptom that the
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dark intima within the bright aorta was easily identified on
CE-CT images. Thus, CE-CT has high sensitivity (>95%)
and specificity (>95%) for the diagnosis of AD. However,
CE-CT needs to inject contrast medium, which cannot be
used in the patients with acute renal failure or allergic
reactions [1], [3]. In addition, some AD patients have very
similar symptoms to other cardiovascular diseases, these
patients may receive non-contrast enhanced CT (NCE-CT)
but CE-CT for disease examinations initially, leading to
the misdiagnosis and missing the treatment time window
for AD patients. If NCE-CT could provide hints for the
diagnosis of AD patients, the misdiagnosis would be reduced.
However, the dissection symptom on NCE-CT images is
not obvious because the aorta without contrast medium has
similar contrast with the intima.

In recent years, several models have been developed to
synthesize a CE-CT image from a NCE-CT or low dose CE-
CT image. These models are almost based on convolutional
neutral network including generative adversarial network
(GAN) [4]. In 2018, an encoder-decoder deep convolutional
network was proposed to generate cardiac contrast enhanced
CT images from contrast-free CT thoracic scans, with the
purpose of volumetric assessment of left heart chambers [5].
Similarly, an encoder-decoder convolutional neural network
was proposed to synthesize the full dose brain contrast
enhanced MR images from the zero dose and low dose
MR images to reduce gadolinium dose [6]. A steerable
GAN method was proposed to generates absent MRA from
existing MR multi-contrast images [7]. It is noteworthy that
several studies have applied GANs in image synthesis of
cross-modality for radiotherapy planning [8], [9], [10], [11],
[12]. Inspired by the previous work, we proposed a novel
framework to synthesize the CE-CT images from NCE-CT
images to detect AD.

The key contributions of this work can be summarized as:
1. A novel deep learning framework combines a segmenta-
tion network with a conditional generative adversarial net-
work (CGAN) to synthesize CE-CT images of high quality
to detect AD. 2. Experiments are conducted to show that our
proposed framework can synthesize better results compared
with CGAN alone 3. A reasonable criterion is concluded
to demonstrate the improvements of detecting AD using the
synthetic CE-CT images.
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Fig. 1. An overview of proposed cascaded deep learning framework. (a) a 3D U-Net which is used to segment aorta from NCE-CT images. (b) a synthetic
network is used to synthesize CE-CT images for aorta.

II. DATASET AND PREPROCESSING

A. Dataset collection

Total of 154 subjects, including 65 AD patients and
89 volunteers without AD but with other cardiovascular
diseases, were recruited for collecting the paired datasets
at two centers: Beijing Anzhen Hospital, Beijing, China,
and Fujian Provincial Hospital, Fujian, China. All subjects
volunteered to participate in this study which was approved
by the Institutional Review Board. Each patient was sequen-
tially conducted NCE-CT and then CE-CT with the same
scan position, coverage, and parameters. The matrix size of
acquired image is 512×512 with a resolution range from
0.625mm×0.625mm to 0.977mm×0.977mm. The range of
slice thickness is from 0.625 mm to 1.250 mm. The CT
images were acquired from GE MEDICAL SYSTEMS,
TOSHIBA, and SIEMENS devices with KVP from 100 to
120. ECG was used during data collection to reduce motion
artifacts. Furthermore, the data was collected at the end of
respiration with breath-holding to reduce misregistration of
the two paired datasets.

B. Dataset selection

24 paired datasets from patients without AD were ran-
domly selected for segmentation of aorta. The rest 130 paired
datasets, including 65 AD patients’ datasets and 65 volun-
teers’ datasets, were further selected for synthetic network.
Five-fold cross validation protocol was used to evaluate the
performance of proposed framework, with a experimental
setting (80% as training & 20% as testing).

C. Dataset Preprocessing

To further reduce misregistration of the two paired datasets
obtain from each subject, we use elastix tool of Slicer3D
software [13] to make a rigid registration for the paired NCE-
CT and CE-CT images. To prepare the mask of aorta for

training segmentation network, the aorta was then manually
contoured from CE-CT images which were obtained from
the 24 volunteers without AD via the Slicer3D software.
The segmentation network was used to segment the aorta
from NCE-CT images. The NCE-CT images and CE-CT
images were then multiplied by the obtained masks of aorta
to prepare a paired dataset for synthetic network.

It notes that NCE-CT and CE-CT images are resampled
to the average voxel spacing of 0.731× 0.731× 0.951mm3

using linear interpolation. The paired volumes for synthetic
network are cropped and padded to a size of 256×256×512
for training acceleration. The volumes contain entire aorta
that ranges from neck to pelvis. Due to abnormal CT value of
aortic stent in the volume of postoperative patients, intensity
values of NCE-CT volumes and CE-CT volumes is cut to
[0, 90] and [0, 700], respectively.

III. METHODOLOGY

The cascaded deep learning framework was shown in
Fig. 1, which contains a 3D segmentation network and a
CGAN synthetic network. The 3D segmentation network was
firstly used to segment aorta from the NCE-CT images and
CE-CT images, and then CGAN was subsequently employed
to map the NCE-CT images to the CE-CT images non-
linearly for the entire aorta.

A. Segmentation of aorta

Encoder-decoder architectures based on deep convolu-
tional neural networks, using skip connections to combine
semantic information with spatial information, have been
widely used in medical image segmentation, such as 2D U-
Net [14] and 3D-UNet [15]. Compared with 2D U-Net, 3D
U-Net has an advantage of using image information along
with slice direction. In contrast to the networks which require
expert knowledge and computing resources, nnU-Net [16] is
recently developed as an out-of-the-box tool that can generate
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Fig. 2. Synthesis of CE-CT images from NCE-CT images via CGAN (first row) and proposed framework (second row). The figure contains 3 subjects
without AD: (a), (b), (c) and 3 subjects with AD: (d), (e) and (f). Each subject is displayed by three images: NCE-CT image (left), real CECT image
(middle) and synthesized CE-CT image (right). The figure demonstrates that our proposed framework synthesizes more realistic CE-CT images for aorta
compared with CGAN alone.

state-of-the-art segmentation of various target structures and
configure itself automatically. Thus, 3D nnU-Net was used
for the segmentation of the aorta.

As shown in Fig. 1(a), the trained 3D U-Net, namely 3D
nnU-Net, is employed to obtain the mask of aorta from NCE-
CT images. The border of the mask is then smoothed in
postprocessing and multiplied to the paired NCE-CT and CE-
CT images for obtaining the region of aorta.

The segmentation experiment was conducted by a
NVIDIA TITAN RTX GPU with 24GB memory. The patch
size of 3D U-Net is defined as the size of 256×256×512.

B. Synthesis of CE-CT images

The synthetic network is CGAN, inspired by the GAN-
based method proposed by Isola et al. [17]. As shown in
Fig. 1(b), the generator of the CGAN is a “U-Net” like
architecture that shares low semantic information between
NCE-CT images and synthesized CE-CT images. The dis-
criminator of the CGAN is based on a 70×70 patchGAN
[17]. It detects the synthesized CE-CT image is real or fake
and guided the generator to synthesize images with sharp
details.

To increase train samples for the CGAN, paired images
are flipped by mirroring. We train the CGAN with an initial
learning rate of 2×10−4 via Adam optimizer, and the batch
size is set as 1. The CGAN is implemented with Pytorch
framework and we trained it on a NVIDIA TITAN GPU
with 24GB memory for 200 epochs.

IV. EXPERIMENTS AND RESULTS

A. Qualitive Evaluation

Our proposed framework is compared with CGAN with
same train and test datasets. The CGAN synthesizes CE-CT
images directly, whereas the proposed framework synthesizes
CE-CT images for aorta only. As shown in Fig. 2, the
proposed framework can synthesize clearer images than
using CGAN alone. Specifically, in Fig. 2(a), (b), and (c),
the proposed framework synthesizes clearer and smoother

images for aorta without AD. In Fig. 2(d), the proposed
framework synthesizes an intimal flap only in abdominal
aorta (see the yellow box), whereas the CGAN synthesizes
nothing in aorta (see the red box). In Fig. 2(e), the proposed
framework synthesizes an intimal flap in thoracic aorta (see
the yellow box), whereas the CGAN synthesizes a blurry
and inhomogeneous aorta (see the red box). In Fig. 2(f), for
a postoperative subject, the proposed framework synthesizes
a winding intimal flap in abdominal aorta (see the yellow
box), whereas the CGAN synthesizes two short and blurry
intimal flaps near the aortic wall (see the red box).

B. Quantitative Evaluation

Three metrics, i.e., peak signal-to-noise ratio (PSNR),
structural similarity (SSIM), mean absolute error (MAE),
were used to evaluate the performance of CGAN and the
proposed framework on synthesizing CE-CT images from
NCE-CE images. For a fair comparison, all metric scores are
calculated on pixels of aorta. Therefore, the region of aorta is
extracted from the real CE-CT images and synthesized CE-
CT images by multiplying the mask. As listed in Table I, the
proposed framework significantly improves the PSNR scores
and MAE scores and performs with a slight increase in SSIM
scores compared to the CGAN.

C. Clinical diagnostic performance

Clinical performance of the proposed network was eval-
uated by an experienced radiologist. As the synthetic CE-
CT images are essentially different from the real CE-CT
images, the radiologist was trained to learn a criterion for
the diagnosis of AD using a fold of the synthesized and
corresponding real CE-CT first. The other four folds are then
used to test clinical diagnostic performance. The criteria of
determining AD on the synthetic CE-CT images includes
a wider diameter of aorta, inhomogeneous CT density, a
long intimal flap and consecutive short intimal flaps that
are parallel or tilted to edge of aortic wall. Otherwise, the
synthetic CE-CT images are defined without AD. Table II
shows the diagnostic results using the synthetic CE-CT
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TABLE I
COMPARISION BETWEEN CGAN AND PROPOSED

FRAMEWORK USING THREE METRICS WITH 5-FOLD CROSS
VALIDATION. (MEAN±STD)

Experiments CGAN
PSNR SSIM MAE

Fold1 31.154±4.049 0.986±0.004 2.367±1.470
Fold2 30.548±3.654 0.986±0.006 2.499±1.329
Fold3 32.077±4.098 0.987±0.004 2.105±1.156
Fold4 31.602±3.451 0.985±0.006 2.143±0.957
Fold5 31.102±3.335 0.985±0.006 2.373±1.287

Average 31.297±3.763 0.985±0.005 2.297±1.261

Experiments Proposed framework
PSNR SSIM MAE

Fold1 33.776±2.847 0.990±0.003 1.247±0.561
Fold2 32.639±3.691 0.989±0.005 1.654±1.278
Fold3 34.590±3.088 0.991±0.003 1.196±0.787
Fold4 33.806±3.446 0.990±0.004 1.375±0.917
Fold5 33.447±2.915 0.989±0.004 1.377±0.731

Average 33.652±3.271 0.990±0.004 1.369±0.899

images obtained by the proposed framework and CGAN. It
demonstrates that the proposed framework has significantly
higher accuracy and sensitivity compared to CGAN alone.
The proposed framework has an approximate specificity with
CGAN alone.

TABLE II
COMPARISION BETWEEN CGAN AND PROPOSED

FRAMEWORK BY PERCEPTUAL STUDY ON FOUR FOLDS.

Experiments CGAN
Accuracy Sensitivity Specificity

Fold1 80.77% 90.91% 71.43%
Fold2 65.38% 45.45% 78.57%
Fold3 69.23% 69.23% 69.23%
Fold4 57.69% 69.23% 46.15%

Average 68.27% 68.71% 66.35%

Experiments Proposed framework
Accuracy Sensitivity Specificity

Fold1 76.92% 91.67% 64.29%
Fold2 80.77% 100% 64.29%
Fold3 80.77% 100% 61.54%
Fold4 84.61% 92.31% 76.92%

Average 80.77% 96.00% 66.76%

V. DISCUSSION AND CONCLUSION
The aortic wall and blood have slightly different X-ray

decay coefficients on NCE-CT images [18], making the
proposed framework for synthesizing CE-CT images from
NCE-CT images to detect AD become possible. It notes that
the sensitivity of the proposed framework is high with an
average of 96%. This indicates the proposed framework can
reduce the misdiagnosis and prompt the patient to make a
further examination. ECG simplifies the rigid registration and
can lead to negligible registration errors. For future work, we
will combine the synthesized network with an auxiliary con-
volutional neural network to automatically classify AD/Non-
AD subjects using the synthesized CE-CT images.

In summary, our experimental results demonstrate that
the proposed framework can be used for detecting AD and
significantly outperformed CGAN alone.
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