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Abstract— The aim of the study is to address the heart failure 

(HF) diagnosis with the application of deep learning approaches. 

Seven deep learning architectures are implemented, where 

stacked Restricted Boltzman Machines (RBMs) and stacked 

Autoencoders (AEs) are used to pre-train Deep Belief Networks 

(DBN) and Deep Neural Networks (DNN).  The data is provided 

by the University College Dublin and the 2nd Department of 

Cardiology from the University Hospital of Ioannina. The 

features recorded are grouped into: general demographic 

information, physical examination, classical cardiovascular risk 

factors, personal history of cardiovascular disease, symptoms, 

medications, echocardiographic features, laboratory findings, 

lifestyle/habits and other diseases. The total number of subjects 

utilized is 422. The deep learning methods provide quite high 

results with the Autoencoder plus DNN approach to 

demonstrate accuracy 91.71%, sensitivity 90.74%, specificity 

92.31% and f-score 89.36%.  

I. INTRODUCTION 

Heart Failure (HF) is a chronic clinical syndrome of the 
cardiovascular system in which the heart cannot pump enough 
blood to deal with the metabolic needs of the body, that is 
mostly caused by reduced left ventricular myocardial function 
[1]. The main symptoms of HF are dyspnea and fatigue, that 
may cause reduced exercise tolerance, and fluid retention, and 
may lead to pulmonary and/or splanchnic congestion and/or 
peripheral edema [2]. HF is among the major causes of 
mortality and morbidity in western societies and it is 
responsible for high costs due to hospitalization [3].  

Early diagnosis of HF is essential. Therefore, it is very 
important to establish a dynamic HF diagnostic model. 
Towards this direction, machine learning (ML) techniques 
have significantly contributed. In recent years, deep learning 
(DL), a branch of ML techniques based on learning 
representations of data with multiple levels of abstraction 
between the inputs and outputs of the algorithm, has gained 
much attention in the field of heart disease detection and 
prediction. DL offers a powerful alternative compared with 
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conventional ML, due to the fact that they enable the users to 
perform more complex analysis [4]. 

Several studies have been conducted to build a model that 
can diagnose HF based on various DL algorithms. Choi et al. 
[5] implemented Recurrent Neural Network (RNN) models 
and multilayer perceptron with 1 hidden layer for early 
detection of HF. Both Chen et al. [6] and Wang et al. [7] 
utilized Heart Rate Variability (HRV) measures to predict 
congestive HF. Chen et al. [6]  implemented a Deep Neural 
Network (DNN) whereas Wang et al. [7] combined the long 
short-term memory (LSTM) network and Convolution 
Network architecture. In 2019, Acharya et al. [8] implemented 
a Convolutional Neural Network (CNN) analyzing also ECG 
signals. Several studies [9-12] implement a DL-based analysis 
on ECG signals. Kim et al. [9] analyzed ECG and 
echocardiographic data from subjects with chronic HF with 
reduced ejection fraction (EF) (HFrEF) and HF with mid-
range EF (HFmrEF). Ning et al. [10] also analyzed  ECG 
signals and applied a hybrid DL algorithm that was composed 
of a CNN and a recursive N. Kwon et al. [11] developed an 
algorithm using a DNN and analyzing demographic 
information and ECG features. Le et al. [13] developed a 
multilayer perceptron neural network utilizing demographics, 
laboratory findings, lifestyle habits and EF features. Gjoreski 
et al. [14] recently conducted a method that combines classic 
ML techniques and end-to-end DL to detect chronic HF. The 
classic ML learns from expert features, and the DL learns 
from a spectro-temporal representation of the signal.  

Most of the above approaches focus either on ECG raw 
signal or HRV measures to classify subjects as HF or not. 
Still, clinical practice suggests that HF diagnosis is a complex 
procedure that should take into consideration multiple clinical 
manifestations. In this sense, in our study, we exploit the data 
mentioned in European Society of Cardiology (ESC) 
guidelines for HF [2]; are usually collected in clinical practice 
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and we apply DL in a multisource dataset emulating the 
medical knowledge about the disease. 

II. MATERIALS AND METHODS 

A. The dataset 

Data is provided by the University College Dublin (UCD), 
Ireland, and the 2nd Department of Cardiology from the 
University Hospital of Ioannina. Data is collected in the 
framework of KardiaTool project. Τhe dataset for HF 
diagnosis consists of 422 subjects (260 without HF and 162 
with chronic HF belonging to NYHA class I or II, as the 
diagnosis of NYHA class III or IV patients is rather 
straightforward and does not necessarily benefits by the 
classification abilities of DL). The features recorded for each 
patient are grouped into the following categories: general 
demographic information, physical examination, classical 
cardiovascular risk factors, personal history of cardiovascular 
disease, symptoms, medication, echocardiogram, laboratory 
findings, lifestyle/habits and other diseases. In total, 28 
features are recorded for each patient.  

B. The proposed methodology 

Data preprocessing is performed as a first step. Missing 
values are imputed by the most frequent value and the mean 
value for nominal and numeric input features respectively.  
Additionally, the nominal input features are transformed by 
one-hot encoding into dummy/indicator variables. The values 
of the numeric input features are normalized by scaling to the 
range of [0,1]. In the present study, stacked Restricted 
Boltzman Machines (RBMs) [15] and stacked Autoencoders 
(AEs) [15]  are used to pre-train Deep Belief Networks (DBN) 
[16] and DNN [17] which operate either as feature extractors 
or directly as classifiers [18-22]. A combination of stacked 
RBMs and a Deep Autoencoder (DeepAE) [23] is 
implemented as feature extractor as well. The learned features 
from the deep feature extractors are used as input to a Random 
Forest (RF) classifier. 

Seven DL architectures are implemented: (i) Stacked 
RBMs + RF classifier, (ii) DBN + RF classifier. (iii) Stacked 
RBMs + DeepAE + RF classifier, (iv) Stacked RBMs + DNN. 
(v) Stacked Autoencoders (AE) + DNN, (vi) DBNs, (vii) 
DNN. Three architectures were implemented as deep feature 
extractors and four architectures as deep classifiers. The 
recorded features from the data, which consist of 12 
categorical and 16 numeric characteristics, feed the models.  

Deep feature extractors 

Stacked RBMs plus RF classifier: Two RBMs are trained 
to produce features layer by layer in unsupervised way [24]. 
The top layer features feed a standalone supervised classifier. 
The size of the two hidden layers is 200 and 100 respectively. 
Thus, 100 features enter the RF classifier (Fig. 1). 

DBN plus RF classifier: A three-layer DBN, pre-trained by 
RBMs and fine-tuned by wake-sleep algorithm in 
unsupervised way, derives features in the last layer which feed 
separately a RF classifier [25]. The size of the three hidden 
layers is 200, 100 and 50 respectively (Fig. 2).  

DeepAE plus RF classifier: A DeepAE, consisting of three 
encoding layers and three decoding layers initialized by RBMs 
pre-trained in unsupervised way, derives compact 

representation of features that next feed a supervised classifier 
[23]. The size of compression by layer is 200-100-50, 
accordingly (Fig. 3). 

Deep classifiers 

Stacked RBMs plus DNN: Two RBMs are trained 
sequentially in an unsupervised way using persistent 
contrastive divergence [26] performing one Gibbs sampling. 
The output of the previous RBM is used as input to the next 
RBM.  The weights of the RBMs are used to initialize a deep 
neural network with three layers that is fine-tuned in 
supervised way by backpropagation [27].  The size of the two 
hidden layers is 200 and 100, respectively (Fig. 4). 

Stacked AEs plus DNN: Two denoising autoencoders (d-
AE) [28, 29] are trained sequentially in unsupervised way and 
create a corrupted copy of the input by introducing some noise. 
Corruption is done randomly by setting some input nodes to 
zero.  This helps to avoid the autoencoders to copy the input to 
the output without learning features about the data. The 
learned weights are used to initialize a deep neural network 
with three layers, which is fine-tuned in a supervised way by 
backpropagation as in the previous model. (Fig. 5). 

DBN: A DBN is pre-trained by RBMs and fine -tuned by 
wake-sleep algorithm in a supervised way. The same structure 
is retained as in the initial paper introducing DBNs by Hinton 
et al. [16].  The DBN has three layers and in the penultimate 
layer are added as many nodes as the output classes. The 
output is one-hot encoded which means the value of the correct 
label is set to 1 and the remainder to zero.  The top two layers 
compose an RBM which is trained with contrastive divergence 
[30, 31].  The number of Gibbs sampling is scaling from 3 to 
10 according to the number of epochs.  The top layer operates 
as a feature detector which learns to model the joint 
distribution of the features and the labels.  The size of the three 
hidden layers is 200, 100 and 50, respectively (Fig. 6). 

DNN: A typical structure of Neural Network with three 
hidden layers is trained in a supervised way without pre-
training and initialized by glorot-uniform initialization [32].  
The size of the three hidden layers is 200, 100 and 50, 
respectively (Fig. 7). 

Ten-fold stratified cross validation is implemented for the 
evaluation of the models. Cross validation error is considered 
to be a reliable estimate of the out of sample error. 
Regularization techniques such as dropout [33] and denoising 
[28, 29] prevent from overfitting. Unsupervised pre-training 
acts as a regularizer as well [19, 34].  The implementation and 
the evaluation of the deep models is done in Scikit-learn API 
combined with Keras (backended by tensorflow) upon 
python3. The RF classifier is provided by the WEKA software. 
The python-weka-wrapper3 (PyWEKA3) library is used to 
combine RF classifier with deep models. 
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Figure 1. Structure of deep feature extractors: Restricted Boltzman Machine 

(RBM) with classifier. 

 

Figure 2: Structure of deep feature extractors: Deep Belief Network (DBN) 

with classifier. 

 
Figure 3: Structure of deep feature extractors: Deep Autoencoder with 

classifier. 

 

Figure 4: Deep classifier: Restricted Boltzmann Machine (RBM) and Deep 

Neural Network (DNN). 

 
Figure 5: Deep classifier: Stacked Denoising Autoencoders with Deep 

Neural Network (DNN). 

 
Figure 6: Deep classifier: Deep Belief Network (DBN) (embedded 

classifier). 

 
Figure 7: Deep classifier: Deep Neural Network. 

III. RESULTS 

The results are reported in terms of four common 
evaluation measures, i.e. classification Accuracy (Acc), 
Sensitivity (Sens), Specificity (Spec) and F-score (TABLE I). 
The Autoencoder plus DNN model achieves the highest 
results, though slightly better, in terms of accuracy (91.71%), 
sensitivity (90.74%), specificity (92.31%) and F-score 
(89.36%). Trials integrating the initial scaling of the numeric 
data in the cross validation loop do not show any degeneration 
of the results eventually due to implementation of the 
regularization techniques mentioned above. 

TABLE I.  CLASSIFICATION RESULTS FOR HF DIAGNOSIS. 

Deep Feature Extractors 

 Acc % Sens % Spec % F-score % 

RBM plus RF 89.10 86.42 91.92 85.89 

DBN plus RF 89.34 85.80 91.54 86.07 

DeepAE plus RF 89.34 85.19 91.92 85.98 

Deep classifiers 

 Acc % Sens % Spec % F-score % 

RBM plus DNN 91.47 90.12 92.31 89.02 

AE plus DNN 91.71 90.74 92.31 89.36 

DBN 85.78 80.86 88.85 81.37 

DNN 90.28 82.18 89.14 82.66 

IV. DISCUSSION 

In the current study the dataset is multisource and cannot be 
directly compared with previous studies, since most of the 
existing relevant approaches (TABLE II) focus on classification 
based on ECG signals or HRV measures.  

TABLE II.  STATE OF THE ART IN DL FOR HF DIAGNOSIS. 

HF early diagnosis 

Study Dataset Evaluation measures 

Precent 
Study 

 

422 subjects  

162 with chronic HF 

260 controls  

Accuracy 91.71% 
Sensitivity 90.74% 

Specificity 92.31% 

F-score 89.36% 

Demographics, physical examination, classical cardiovascular risk 

factors, personal history of cardiovascular disease, symptoms, 

medications, echocardiographic features, laboratory findings, 
lifestyle/habits and other diseases 

Choi et al. 

[5] 

3884 with HF  

28903 controls 

AUC  0.777 

 

Demographics, habits, clinical and laboratory values, ICD-9 codes, 

CPT codes, medications 

Chen et al. 
[6] 

 

116 subjects 
44 with congestive HF  

72 controls 

Accuracy 72.44% 
Sensitivity 50.39% 

Specificity 84.93% 

HRV measures based on the RR interval 

Wang et al. 
[7] 

 

156 subjects 
44 with congestive HF 

112 controls 

Accuracy 99.22% 
 

HRV measures based on the RR interval 
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HF early diagnosis 

Study Dataset Evaluation measures 

Acharya et 

al. [8] 

 

73 subjects 

15 with congestive HF 

58 controls 

Accuracy 98.97% 

Sensitivity 98.87% 

Specificity 99.01%  

ECG signals 

Kim et al. [9] 

 

2209 subjects with 

chronic HF 

18196 controls 

ROC +4 to +6  

Specificity 98%  

Positive predictive value 
95%  

ECG signals, echocardiographic features 

Ning et al. 
[10] 

 

15 subjects with chronic 
HF 

18 controls 

Accuracy 99.93% 
Sensitivity 99.85% 

Specificity 100% 

ECG signals 

Kwon et al. 
[11] 

22.765 subjects 
1.391 with HFrEF 

AUC for identification of 
HFrEF was 84.30% 

Demographics, ECG features, atrial fibrillation or atrial flutter, QT 

interval, QRS duration, R wave axis, and T wave axis, as the predictive 
variables 

Le et al. [13] 299 subjects Accuracy 88.00% 

Demographics, laboratory findings, habits, ejection fraction 

Gjoreski et 

al. [14] 

947 subjects Accuracy 92.90% 

sensitivity 82.30% 

specificity 96.20% 

Heart sound characteristics 

V. CONCLUSION 

In the present study, we present a method for diagnosing 
HF based on DL. We implemented various DL techniques on 
a multisource dataset, which renders our study quite 
innovative due to the fact that other studies are mainly based 
on ECG signals or HRV measures. The Autoencoder plus 
Deep Neural Network model achieved the highest results in 
terms of accuracy (91.71%), sensitivity (90.74%), specificity 
(92.31%) and F-score (89.36%), indicating the applicability of 
the proposed approach. In future work, the statistical 
significance of the performance can be explored comparing the 
models by additional runs with different random seeds. 
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