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Abstract— Heart Rate Variability is a significant indicator
of the Autonomic Neural System’s functioning, traditionally
evaluated from electrocardiogram recordings. Photoplethys-
mography sensors, like electrocardiograph devices, track the
heart’s activity and have been widely popularized by their use
in smart watches and fitness trackers. In this study we develop
a deep learning based approach which is able to successfully
estimate the patient’s Root Mean Square of the Successive
Differences, a common heart rate variability metric, from lower
quality, less expensive photoplethysmography sensors under a
wide range of conditions.

I. INTRODUCTION

Heart Rate Variability (HRV) is a significant indicator
of the Autonomic Neural System’s healthy activity, tradi-
tionally calculated after analysing electrocardiograph (ECG)
recordings. Its non-invasive nature and its ease of calculation
have made it popular as it has been used in a plethora of
clinical applications like risk assessment after acute my-
ocardial infarction, early detection of diabetic neuropathy
[1], prediction of atrial fibrillation [2] and chronic coro-
nary syndrome [3] and others [1]. More recently, with the
global spread of COVID-19, research has been conducted
on examining whether HRV analysis can be used in order to
predict COVID-19 infections and their severity [4]. Further, it
also provides useful information about the Autonomic Neural
System’s behavior during sleep [5] and mental stress levels
[6].

Photoplethysmographic (PPG) sensors are optical sensors,
worn on the surface of the skin, that can track the blood
volume changes caused by the cardiac cycle and thus monitor
the heart’s activity. Although the sensor’s signal is correlated
to the ECG, it is considered of lower quality since it can be
significantly affected by a plethora of factors. This constitutes
the medical analysis of PPG signals difficult.

However PPG sensors demonstrate a lot of advantages.
They are a low-cost, easy-to-use alternative to the electrocar-
diograph. The portable version of electrcardiographs (Holter
devices), suffer from significant limitations. They can record
data for up to two weeks ([7]) and require a visit to a medical
professional before and after the examination. Furthermore,
patient’s comfortability is an issue since adhesive leads must
be attached on the patient’s body for the duration of the
medical examination.

Popularized by their use in smart-watches and fitness
trackers, PPG sensors are available to the general public
and can be easily placed on the patient by themselves. Their
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form factor, usually worn on the wrist as a watch or a band,
guarantees a comfortable experience for the patient. Having
been widely integrated in smart devices, they cooperate with
smartphones and data can be easily retrieved from a smart
application. PPG’s advantages make it not only a tempting
alternative to the Holter and other traditional ECG devices
but also open up new possibilities for remote long term
continuous medical monitoring, personalized medicine and
early diagnosis.

PPG sensors’ recordings are of less quality compared to
ECG signals. That in combination with the heart rate variabil-
ity’s sensitivity to noise render accurate heart rate variability
analysis from PPG signals a challenging task especially in
non-sterile, in-the-wild environments where conditions are
not optimal. In this study, a Deep Convolutional Neural
network is employed in order to accurately estimate the Heart
Rate Variability as the Root Mean Square of the Successive
Differences (RMSSD) from noisy photoplethysmographic
signals that are recorded in real-life situations.

II. HEART RATE VARIABILITY METHODS

A. THE HEART RATE VARIABILITY ANALYSIS

Traditionally the HRV is calculated from a segment of
ECG recording of appropriate length and the calculation
begins with the detection of the segment’s R-peaks, since
they determine the duration of each cardiac cycle. The
timeseries of the time intervals between successive R-peaks,
the RR timeseries, is calculated as:

RR(i) = tRi
− tRi−1

(1)

where the i-th R-peak is observed at time instant tRi
. The

HRV is calculated after statistical, time or frequency domain
analysis on the RR timeseries, which have been standardized
by [1]. The duration of the recording segment from which a
single HRV value is calculated is also a significant parameter
that needs to be determined.

B. HRV ESTIMATION FROM PHOTOPLETHYSMO-
GRAPHIC SIGNALS

Under optimal conditions HRV can be successfully cal-
culated from PPG signals [8]. However mental or physical
stress reduces the agreement between ECG and PPG esti-
mated HRV. This disagreement is attributed to both physi-
ological phenomena, like respiration or arterial stifneess, as
well as to external factors like motion.

Sensor motion can introduce motion artifacts (MA) to the
PPG signal heavily damaging it and reducing the prominence
of the cardiac component. Motion Artifacts are attributed
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to sensor movement, tissue deformation and hemodynamic
effects as commented by [9]. The motion’s frequencies most
of the time lie inside the cardiac frequency range, rendering
a simple filtering approach obsolete [10].

According to [8], although PPG motion artifact reduction
methods exist, they have not been employed on HRV es-
timation applications. The need for developing robust peak
detection methods from noisy PPG signals is also highlighted
in [11]. To our knowledge, most motion artifact reduction
approaches have been developed with the end goal of esti-
mating the Heart Rate and not the HRV.

Tackling the problem of HRV estimation from PPG re-
quires a method that can either directly estimate HRV or
detect the PPG’s R-peaks and then calculate the HRV from
the estimated RR timeseries. In [12] a generic algorithm,
Automatic Multiscale-based Peak Detection (AMPD), is de-
veloped in order to detect the peaks in noisy periodic and
quasi-periodic signals, a category that the PPG signal falls
into. The SpaMa algorithm [13] firstly estimates the Heart
Rate and based on these estimations it reconstructs the PPG
signal. In the final step it detects the peaks of the clean signal
and performs HRV analysis on the detected RR timeseries.
A deep learning approach is developed in [11] where several
deep models are utilized in order to detect the peaks of PPG
data.

III. PROPOSED METHOD

A. RMSSD CALCULATION

In this work we focus on estimating the HRV with the
RMSSD metric. Given the RR timeseries as described in
equation (1), the RMSSD, measured in milliseconds, is
calculated as:

RMSSD =

(
1

N

N∑
1

(RR(i)−RR(i− 1))2

)1/2

(2)

The five minute short-term HRV was chosen as the stan-
dardized short-term HRV segment length [1].

B. INPUT FORMULATION

The model is fed with the input formed from the PPG and
acceleration signals. The acceleration is provided as a motion
reference in order to help the model distinguish between
the cardiac activity and motion components. According to
[14], acceleration might not be the optimal choice for this
task. However, at the time this research is being conducted,
accelerometers are more popular than dual sensor configura-
tions. Hence we opted for the more widely adopted option.

The PPG and a 3D acceleration signal are passed through
a bandpass filter in the frequency range from 0.05 Hz to
4.0 Hz ensuring that components outside the heart’s activ-
ity frequency range are dropped. The Short-Time Fourier
Transform (STFT) of the 4 signals is calculated in 8 second
sliding windows with a step of 2 seconds. The use of 8
second windows with a 2 second slide is quite popular in
relative literature when processing MA infected PPG signals.

The 8-second STFT vector is then normalized and a group
of 147 consecutive 8-sec windows compose a 5 minute
spectrogram. Finally combining all four spectrograms, one
for each channel, a 4-channel two-dimensional sample is
generated.

C. PROPOSED CONVOLUTION NEURAL NETWORK

After the input is formulated, it is fed as a 4 channel
signal into a Convolutional Neural Network (CNN). The
CNN is tasked with reducing the effect of Motion Artifacts
and at the same time calculating the RMSSD of the segment.
Since the PPG spectrogram portrays the progression of the
cardiac cycle frequency across the 5 minute duration of the
input segment, the CNN is trained with the target goal of
learning the function that maps this frequency progression
to the selected HRV method.

In this approach, the HRV is calculated directly from the
signal’s spectral contents. Although such an approach is quite
popular in PPG based Heart Rate estimations, to the best of
our knowledge this is the first PPG HRV estimation method
that does not rely on the intermediate step of PPG peak
detection and RR timeseries formulation.

The model’s architecture is described in Table I and is
based on the work of [15].

TABLE I
CNN MODEL

Layer No. Filters Output Shape No. Parameters
Convolution 8 (40, 147, 8) 40
Convolution 16 (40, 147, 16) 1168
MaxPooling - (20, 74, 16) -
Convolution 32 (20, 74, 32) 4640
MaxPooling - (10, 37, 32) -
Convolution 64 (10, 37, 64) 18496
MaxPooling - (5, 19, 64) -
Convolution 128 (5, 19, 128) 18496
MaxPooling - (3, 10, 128) -
Convolution 32 (3, 10, 32) 4128

Flatten - (960) -
Dense 256 (256) 246016

Dropout - (256) -
Dense 1 (1) 257

The ELU [16] is used as the activation function in all
the layers except from the last one where a linear activation
is used. The same layer weight initialization method was
followed as proposed by [16].

The robustness of the method’s estimations is enhanced
by formulating a ten model ensemble. All the models share
the same architecture however the initial conditions as well
as the optimization path during learning is different for each
model. The training set is also randomly shuffled for the
training of each of the ensemble’s models. The final RMSSD
estimations are calculated as the average of all 10 outputs.

IV. EXPERIMENTAL EVALUATION

A. DATASETS

Three publicly available datasets were used to train and
evaluate the proposed CNN. All three studies recorded the
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PPG signal along with the acceleration of the wrist. The ECG
is also provided and it is synchronized with the PPG and the
acceleration.

The first one is WESAD [17], a dataset aimed to study the
efficacy of inferring a subject’s affective state from its physi-
ological signals. Fifteen subjects participated in the study and
the experiment for each one lasted approximately two hours.
The duration of the experiment was split into 5 stages, during
which the neutral mental state, amusement and stress were
elicited. The second dataset used is PPGDalia, [15], bearing
several similarities to the WESAD dataset. However, here
emphasis is given on the subjects performing a wider range
of physical activities aiming to simulate real-life situations.
PPGDalia also used fifteen participants with approximately
a two and a half hour session for each participant. The third
dataset is the 2015 IEEE Signal Processing Cup Training
dataset [18] consisting of 12 5-minute recordings from 12
subjects which were asked to exercise on a treadmill at
speeds from 1km/h to 15km/h.

Employing the three datasets in this study allows for the
thorough examination of the effects of both mental and
physical stresses on the accuracy of the model’s estimations.

B. EXPERIMENTAL SETUP

The model is trained and evaluated on WESAD and
PPGDalia while the IEEE dataset is utilized for comparing
it to other methods during the evaluation stage.

For the first two datasets, the synchronized ECG, PPG and
acceleration are split into 5 minute samples with a 10 second
step between two successive samples. This overlay is chosen
as a data augmentation strategy in order to generate the
appropriate amount of samples needed to train the network.
The IEEE data are already split in 12 5-min samples.

From the ECG segment we formulate the RR peak interval
timeseries. The PPGDalia dataset provides the locations of
the R-peaks, while the Biosppy Library [19] was used for
the R-peak detection in the WESAD and IEEE datasets. The
ground truth RMSSD of each 5-minute segment is calcu-
lated according to the equation (2) while the corresponding
input samples are created following the process described in
Section III.

The network is trained and evaluated on the PPGDalia and
WESAD datasets using the Leave-One-Out (LOO) strategy.
This way the network’s generalization ability among differ-
ent, previously unseen patients, can be evaluated. For the
formation of the ensemble the training process is repeated
10 times resulting in an ensemble of 10 trained models.

The performance on the IEEE Dataset is evaluated as the
average performance achieved by the ensembles that were
trained during the LOO training on the PPGDalia.

C. RESULTS

Small errors were achieved on both WESAD and PPG-
Dalia experiments. For WESAD, across all 15 sessions the
average MAE was 8.97 ms, the STDE 5.15 ms and the
average RMSE was 10.42 ms. Similar error levels were

observed for the PPGDalia dataset (7.81 ms MAE, 5.56 ms
STDE and 9.66 ms RMSE).

An example of the model’s estimations is given in Fig.
1, where WESAD’s S10 and PPGDalia’s S11 ground truth
and estimated RMSSD values are depicted. It is evident that
estimated RMSSD closely follows the ground truth values
throughout all the session’s activities in both cases.
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Fig. 1. Ensemble’s estimation on WESAD’s S10 (top) and
PPGDalia’s S11 (bottom)

It is interesting examining the estimations’ error across the
different subjects’ mental and physical stress levels (Table
II). For each activity, the RMSE, MAE and STDE was
averaged across all subjects. The activities’ details can be
found in [17] and [15] for the two datasets accordingly. We
note here that Medi 1 and 2 are meditation stages and the
Transient activity is the duration between the ending of an
activity and the beginning of the next one. The error remains
low during all the different mental stress levels as the RMSE
is observed in the range of 8-10 ms, close to the Average
RMSE of all the sessions. Small error and error fluctuations
are observed throughout the PPGDalia’s activities too.

Finally, we compare our approach to [11] and [13], both
of which rely on the intermediate step of detecting the PPG’s
peaks. According to its authors, [11] managed to outperform
the AMPD algorithm. Since the IEEE dataset is used, a direct
performance comparison is possible. Although the 1-min
estimations cannot be exactly compared to 5-min, we report
that our approach achieved an order of magnitude more
accurate estimations than the method of [11]. In particular
the authors report an average error of -63.78 ms with a 65.13
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TABLE II
AVERAGED PERFORMANCE ACROSS EACH EXPERIMENT’S STAGE.

WESAD
Activity RMSE(ms) MAE(ms) STDE(ms)

Base 10.81 9.41 5.11
Stress 8.84 7.87 3.75

Medi 1 10.14 9.39 3.6
Amusement 9.31 8.74 2.95

Medi 2 9.19 8.79 2.5
PPGDalia

Activity RMSE(ms) MAE(ms) STDE(ms)
Transient 7.11 6.00 3.64

Sitting 11.19 10.31 3.69
Stairs 8.77 8.09 3.19

Table soccer 9.08 8.55 2.92
Cycling 6.15 5.60 2.29

Driving car 7.42 6.88 2.49
Lunch break 9.07 8.12 3.78

Walking 10.66 10.09 3.20
Working 10.65 9.80 3.96

ms standard deviation. In comparison our approach achieved
an average error and standard deviation of -6.99 ms and 2.21
ms accordingly.

SpaMa estimates the RMSSD on the 9-min recordings of
the Chon Lab dataset ([13]), which bears many similarities
to the IEEE dataset in its experimental setup. Although a
direct performance comparison between different datasets
is not straightforward, or even possible in some cases, the
similarities between the two experiments seem to allow a
qualitative comparison. Furthermore, the Chon Lab dataset
utilizes a forehead mounted sensor, which generally results
in PPG recordings of greater quality and less motion artifact
interference [20]. Both datasets used similar PPG sensor
wave lengths. Across all 10 subjects SpaMa achieved a MAE
of 12.23 ms and STDE 9.33 ms. Our approach achieved in
the IEEE dataset a MAE of 6.99 ms and STDE of 2.21 ms.

V. CONCLUSIONS

In this work a deep learning approach was developed in
order to tackle the problem of accurate RMSSD estimation
in real-life conditions from Motion-Artifact affected PPG
signals and 3D acceleration as a motion reference. In our
experiments the model’s accuracy was tested under mental
(WESAD dataset) and physical (PPGDalia dataset) stress,
conditions which can have a great impact on the agreement
between the ECG and the PPG signals and damage the
accuracy of PPG estimated HRV. Across the PPGDalia’s
simulated daily routine the model achieved satisfactory error
levels, while it also successfully performed throughout WE-
SAD’s mental stress levels. Finally, the proposed approach
seems to outperform current state of the art, demonstrating
at the same time potential superiority of the direct RMSSD
estimation approach.
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