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Abstract - Continuous monitoring of patients with 

Parkinson’s Disease (PD) is critical for their effective 

management, as early detection of improvement or degradation 

signs play an important role on pharmaceutical and/or 

interventional plans. Within this work, a group of seven PD 

patients and a group of ten controls performed a set of exercises 

related to the evaluation of PD gait. Plantar pressure signals 

were collected and used to derive a set of analytics. Statistical 

tests and feature selection approaches revealed that the spatial 

distribution of the Center of Pressure during a static balance 

exercise is the most discriminative analytic and may be used for 

every-day monitoring of the patients. Results have revealed that 

out of the 28 features extracted from the collected signals, 10 

were statistically significant (p < 0.05) and can be used to 

machine learning algorithms and/or similar approaches. 

Keywords: Gait analysis, plantar pressure data, Parkinson’s 

disease, gait patterns 

I. INTRODUCTION 

Normal gait is an activity related to the proper 

functioning of different organs and systems such as the central 

peripheral nervous system, spine and spinal system [1]. The 

main characteristics of the bipedal are: a) the periodic 

movement of each foot from the support position to the next, 

which forms a circle and, b) the ground reaction forces (GRF), 

which are applied to the legs to support the body (vertical 

Ground Force Reaction - vGRF) [1]. The study of GRF and 

plantar pressure analysis are efficient evaluation methods for 
gait biomechanics. GRF and body weight are the only 

external forces applied on the human body during normal 

walking. vGRF seems to be a representative indicator for 

mechanical stress on the plantar surface of the foot, which is 

related to the overall forces developed by the joints and 

muscles during walking [2] while, the center of pressure 

(CoP) is the point where the instantaneous resultant vGRF 

acts on the foot.  

The individual gait pattern is influenced by age, 

personality, mood, and sociocultural factors. Preferred 

walking speed in older adults is a sensitive indicator of overall 

health while safe walking requires excellent cognitive 
function and executive control [3]. The onset of a gait disorder 

may indicate cerebrovascular or other acute damage to the 

nervous system, as well as systemic disease or adverse effects 
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of a medication, especially in the case of poly-

pharmaceuticals. The prevalence of gait disorders increases 

from 10% in people aged 60-69 years to more than 60% in 

people over 80 years [4]. Dysesthesia disorder due to 

polyneuropathy, Parkinson disease, and frontal gait disorders 
due to subcortical vascular encephalopathy or dementia-

related disorders are some of the most common neurological 

causes [5]. With advanced age, the percentage of patients with 

multiple causes or combinations of neurological and non-

neurological disorders, gait disorders increase [6]. The 

various pathological conditions lead to gait patterns with 

specific characteristics. 

Many gait phase detection algorithms have been 

developed and presented in the literature [7]. Simple systems 

based on foot pressure [7], inertia and gyroscope data [8] 

distinguish gait phases but they appeared to be weak in 

correcting the resulting errors. More advanced and complex 
artificial intelligence algorithms (machine learning, fuzzy 

logic, support vector machine, artificial neural network) have 

been introduced [9] for more accurate and error resistance gait 

phase recognition based on both foot pressure and inertial 

measurement units (IMU) data. However, what is of most 

concern to many researchers today is the detection of those 

features that could be considered indicators of Parkinson's 

disease progression. According to the literature, the most 

obvious symptom in the locomotor system is the difficulty of 

walking, which is associated with stiffness, rigidity, and 

bradykinesia. In addition, both PD patients and aged people 
are found to have difficulty controlling their balance during 

gait and posture, which can lead to falls, injuries, and reduced 

quality of life. In particular, the pre-existing literature 

provides information on the fact that people with Parkinson's 

perform smaller steps, have reduced step height and an 

extended support phase compared to healthy people [10].  

The aim of this work is to compare the patterns of free-

walking at a slow, natural and high pace and the Time Up and 

Go (TUG) test between mild PD patients, throughout ON 

status, and the control group which includes healthy age-

matched subjects with the use of smart insole (in-shoe 

pressure sensors array along with a 6-axis IMU sensor). In 
addition, we evaluate the extracted features by means of 

innovative algorithmic pipelines to classify individuals. 
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The research novelty of this work includes (a) the 

identification of patterns related to the presence of PD, (b) a 

novel approach for quantification of the patterns related to PD 

which can lead to the classification of patients according to 

PD symptoms severity and (c) a statistically significant 
ranking of features related to standing and walking exercises, 

as analyzed by plantar pressure data, which can facilitate the 

design of both machine learning approaches and PD 

rehabilitation exercises. 

II. MATERIALS AND METHODS 

Various clinical measurement protocols have been 

proposed and used in both normal and pathological walkers 

to evaluate gait parameters, balance in posture and in motion, 

and for the risk of falling. Most of them include a number of 

straight-paced steps, usually at different speeds (slow, normal 

and fast), as well as walking on an inclined plane and stairs. 

For pathological walkers, and especially for patients with 
Parkinson disease (PD), many researchers recommend TUG 

test (time for uprising and start walking from a sitting position 

without assistance from the upper extremities), walking on a 

treadmill with obstacles, and dual task walking (walking 

while the patient also performs. an arithmetic operation, 

conversation, transfer of an object, etc.) [11]. The design of 

the clinical measurement protocol for our study was carried 

out with simplicity, security, and completeness following the 

guidelines to avoid falls in elderly and Parkinson's patients 

(patients at high risk of falls).  

The patients who were recruited were informed for the 
study (and join it after signing the volunteer consent form) 

during their visit to the rehabilitation center. Specifically, the 

study was conducted at Palladion which is a medical 

rehabilitation and follow-up care centre in Tripoli, Greece. 

The study inclusion criteria for PD patients were: Hoehn and 

Yahr scale classification between 1 and 3 regardless age, with 

the ability to perform the protocol’s exercises and for the elder 

group: age over sixty years old without any musculoskeletal 

and neurological problem that affect the subject's gait and 

balance. The data collection included 10 elder people and 7 

PD patients who met the inclusion criteria as described in the 

clinical research protocol. Table I shows the averages of the 
anthropometric data and demographic characteristics of the 

patients. 

TABLE I: DEMOGRAPHIC PARAMETERS (IN THE FORM OF MEDIAN ± 

STANDARD DEVIATION VALUES). 

 CG PD 

Age [years] 73,3±11,79 72,3±7,54 

Weight [kg] 79,9±7,62 81,1±9,75 
Foot Size 42,3±1,06 42,4±1,13 
Height [cm] 172,5±5,74 171,7±6,57 
Gender [male ratio] 1 1 
BMI 26,9±3,19 27,5±3,19 

CG = Control Group subjects, PD = Parkinson’s disease 

patients. 

A. Experimental Procedure 

1) 10m Free Walking in various gait velocities (Exercise 1) 

In this exercise, the subject was asked to walk in a straight 

line for 10m starting from an upright position. At the end of 

the 10m the subject makes a 180o turn and returns to his 

original position. The exercise is repeated twice. This exercise 

was performed for three different walking speeds (slow, 

natural and fast) as perceived by the walker. 

2) Timed Up and Go (TUG) test (Exercise 2) 

In this exercise, participants were requested to start the 

exercise from a sitting position. Then, the subjects were asked 
to get up from the sitting position on the chair (without the 

help of their arms) and start walking in a straight line for 10m. 

At the end of the 10m mark the subject made a 180o turn and 

returned to their original position sitting on the chair. The 

exercise was repeated twice for every subject.  

3) Static exercise for postural analysis (Exercise 3) 

The subjects stand upright with their feet at about 30cm 

distance while the feet facing forward. Subjects stand still for 

10sec with their eyes open. Then it was requested from the 

participants to continue the exercise with their eyes closed for 

another 10sec time period. 

B. Sensing devices 

For the recording of plantar pressure and IMU data from 

the CG and PD participants, Moticon's® insoles solution was 

chosen, for their construction simplicity (no additional cables 

and external module), for the satisfactory integrated number 

of pressure sensors and for the fact that they have built-in 
accelerometer and gyroscope sensors [12]. Specifically, each 

insole incorporates 16 pressure sensors with a measuring 

pressure range from 0-50 N / cm2, a resolution of 0.25 N / cm2 

and a sampling frequency which can reach 100Hz. At the 

central area of each insole, the 6-axis IMU along with 

Bluetooth communication dongle and the battery are placed. 

The built-in accelerometer records the acceleration of the 

insole on the three axes with a range of ± 16g while the 

gyroscope records the rotation rate of each insole with respect 

to its axes with a range in ± 2000dps. 

C. Data Acquisition 

The collected data of each experimental trial consists of, 

synchronization timestamp, pressure data from all sensors and 

3-axial accelerometer and 3-axial gyroscope data of both 

insoles with a sampling frequency of 100 Hz. Each task was 

video recorded. A video camera was placed in such a way that 

only the lower part of the patient’s legs was visible. Prior to 
registration, insoles were calibrated and adapted individually 

to the shoes of each participant.  

D. Gait and balance metrics and analytics 

The collected signals from the insoles were analysed, 

aiming to calculate and extract the gait metrics. The gait 

metrics are related to the important gait events, as presented 
in Table II. More specifically, as presented in Algorithm 1, 

the proposed methodology calculates for each gait cycle the 

time periods between the consecutive gait events. The 
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algorithm includes a pre-processing step, which handles the 

normalization and the denoising of the data. 

TABLE II: TIMING ON THE GAIT EVENTS. 

Event time point 

right heel strike 𝑡1 

left toe off 𝑡2 

right toe strike 𝑡3 

right heel off  𝑡4 

left heel strike 𝑡5 

right toe off 𝑡6 

left toe strike 𝑡7 

left heel off 𝑡8 

Based on the metrics calculated for each gait cycle, the 

following gait analytics are calculated using the formulas 

presented below (Table III). 

TABLE III: GAIT ANALYTICS CALCULATION BASED ON GAIT METRICS. 

Gait analytic Calculation 

Right single support time 𝑎1 = 𝑡2|𝑛𝑒𝑥𝑡𝑐𝑦𝑐𝑙𝑒 −  𝑡5 

Left single support time 𝑎2 = 𝑡1|𝑛𝑒𝑥𝑡𝑐𝑦𝑐𝑙𝑒 −  𝑡6 

Double support time 𝑎3 = (𝑡2 − 𝑡1) + (𝑡6 − 𝑡5) 
Right stance phase duration 𝑎4 = 𝑡6 − 𝑡1 

Left stance phase duration 𝑎5 = 𝑡2|𝑛𝑒𝑥𝑡𝑐𝑦𝑐𝑙𝑒 − 𝑡5 

Right load response time 𝑎6 = 𝑡2 − 𝑡1 
Right terminal stance time 𝑎7 = 𝑡4 − 𝑡2 
Right pre-swing time 𝑎8 = 𝑡5 − 𝑡4 

Right gait cycle time 𝑎9 = 𝑡1|𝑛𝑒𝑥𝑡𝑐𝑦𝑐𝑙𝑒 − 𝑡1 

Left loading response time 𝑎10 = 𝑡6 − 𝑡5 

Left terminal stance time 𝑎11 = 𝑡7 − 𝑡6 

Left pre-swing phase time 𝑎12 = 𝑡1|𝑛𝑒𝑥𝑡𝑐𝑦𝑐𝑙𝑒 − 𝑡7 

Left gait cycle 𝑎13 = 𝑡2|𝑛𝑒𝑥𝑡𝑐𝑦𝑐𝑙𝑒 − 𝑡2 

Cadence 𝑎14 =
1

𝑡2|𝑛𝑒𝑥𝑡𝑐𝑦𝑐𝑙𝑒 − 𝑡1
 

Right single support time 
percentage over gait cycle 

𝑎15 =
𝑎1

𝑎9
  

Left single support time 

percentage over gait cycle 
𝑎16 =

𝑎2

𝑎9
  

Double support time 
percentage over gait cycle 

𝑎17 =
𝑎3

𝑎9
  

Right stance phase time 
percentage over gait cycle 

𝑎18 =
𝑎4

𝑎9
  

Right stance phase time 
percentage  over gait cycle 

𝑎19 =
𝑎5

𝑎9
  

Right loading response 

percentage time over gait cycle 
𝑎20 =

𝑎6

𝑎9
  

Right stance phase time 
percentage over gait cycle 

𝑎21 =
𝑎7

𝑎9
  

Right pre-swing phase time 
percentage over gait cycle 

𝑎22 =
𝑎8

𝑎9
  

Left loading response 

percentage phase time over gait 
cycle. 

𝑎23 =
𝑎10

𝑎9
  

Left terminal stance time 
percentage over gait cycle. 

𝑎24 =
𝑎11

𝑎9
  

Left pre-swing phase time 
percentage over gait cycle 

𝑎25 =
𝑎12

𝑎9
  

All the aforementioned analytics have been calculated for 

each gait cycle for the walking part of Exercise 1 and 2. For 
the whole exercise, the mean values and the standard 

deviations of the derived analytics were also calculated. 

Additionally, the stand-up time (sut) and time-to-go (gt) time 

were also computed based on the input pressure data from the 

insoles. From Exercise 3, the spatial distribution of the CoP 

of both feet (bcopl & bcopr) have been calculated and 

quantified as the average Euclidean distance from the center 

of the insole. All calculated values have been normalized over 

the maximum value of each analytic. 

III. RESULTS 

A. Statistical analysis 

In order to identify the statistical relevance of each 

calculated analytic, specific statistical measures, like 

information gain and chi-squared test have been determined. 

The results for the 10 most relevant analytics are presented in 

Table IV.  

TABLE IV: STATISTICAL ANALYSIS ON THE GAIT ANALYTICS. 

analytic Information Gain Chi-square test 

bcorp 0.269 8.417 

bcopl 0.303 8.417 

sut 0.316 8.337 

a9(mean) 0.163 5.307 

a13(std) 0.2 5.307 

a19(mean) 0.309 5.307 

a2(std) 0.343 5.307 

a8(mean) 0.461 5.307 

a4(mean) 0.126 4.019 

a3(mean) 0.126 4.019 

For the analytics presented in Table IV, a box plot 

diagram is presented in Fig. 2, where the analytics are 

compared for the two groups. For all of the analytics it is clear 

that mean values and the variance for the PD patients are 

substantially higher than the ones for the elder subjects.  

Fig. 3 presents the spatial distribution of the CoP during 

the static balance exercise for PD and elder subjects. The 

variance of the CoP justifies the high statistical importance of 

bcopl and bcopr analytics, as it is obvious that PD subjects 

present considerably higher values compared with the elder 

subjects.  

B. Gait Patterns 

Aiming to identify specific patterns between the two 

groups of subjects, two visualizations are proposed. Fig. 1 

presents the separability of the two classes using a RadViz 

Visualizer [13]. RadViz is a multivariate data visualization 
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algorithm that plots each feature dimension uniformly around 

the circumference of a circle and then plots points on the 

interior of the circle such that the point normalizes its values 

on the axes from the center to each arc. 

Finally, Fig. 4 presents for each participant the heatmap 
of the analytics presented in Table 4. This visualization 

provides a clear conceptual insight of the analytics patterns 

for the PD patients compared with the elder subjects. The 

higher values for almost all selected analytics provide a 

“lighter” pattern which can be easily distinguished.   

 

Figure 1: RadViz visualization on the 5 most relevant analytics. 

 

Figure 2: Box plots for the 10 most relevant analytics. 

I. CONCLUSIONS 

Continuous monitoring of the status of PD patients and/or 

high-risk elder individuals is crucial for either assessing the 

improvement or degradation of the condition in the first case 
of early diagnosis in the latter. Focusing on the quality of life 

of the patients, quick and targeted assessment methods, which 

can be performed in home environment, are of great 

importance.  

The results of the study provide a clear proposal of the 

most important gait analytics based on plantar pressures that 

a system / method should collect in order to assess the 

condition of an individual related to PD. Most important, the 

fact that the three most important analytics derives from the 

static balance exercise and the stand-up time during exercise 

and not from the gait analytics.  
Consequently, based on plantar pressures, a simple static 

balance exercise can provide important information about the 

status of the patient, without having to involve necessarily 

complex gait analysis. Thus, these analytics have the capacity 

to act as screening or first-level tests on PD patients. 

 

Figure 3: Spatial distribution of 7 

PD and 10 elder subjects. The 

values have been normalized 

around the center of the axes. 

 

Figure 4: Heatmap of the most 

relevant analytics. 

Future work will focus on enlarging the plantar pressures 

dataset and on applying artificial intelligence models on the 

proposed analytics aiming to produce inference models 

related to the progression of PD. 
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