
  

 

Abstract—Objective: We investigate the effect of selective 

single parameter personalization on the performance of multi-

parameter models for pulse arrival time (PAT) based blood 

pressure (BP) surrogates. Methods: Our data set stems from 15 

surgery patients, and we selected from each patient 5 segments 

of 30 min length each. We evaluate the root mean squared BP 

tracking error of the two models with and without single 

parameter personalization. We further compare the BP tracking 

performance to a surrogate-free sample-and-hold approach, 

e.g., as afforded by conventional non-invasive blood pressure 

(NIBP) oscillometry. Results: Parameter personalization is key 

to realizing a tracking performance benefit of PAT-based BP 

surrogates. The highest tracking error reduction of about 3.7 

mmHg with respect to a sample-and-hold approach was reached 

with a personalized model which is linear in the pulse wave 

velocity domain. It achieves an estimation error of 7.8 mmHg 

with respect to a continuously measured invasive reference. 

 

Clinical Relevance—We give a performance analysis of PAT-

based BP surrogates which are personalized to a patient with a 

single NIBP spot measurement. We show for surgery patients 

that patient-specific personalization enables continuous beat-to-

beat BP monitoring over 30 min intervals with a average root 

mean squared error of less than 8 mmHg. 

I. INTRODUCTION 

The clinical value of continuous arterial blood pressure (ABP) 
information of a patient is well recognized, and a much 
researched technical approach to non-invasive beat-to-beat BP 
measurements is rooted in the concepts of pulse arrival time 
(PAT), pulse transit time (PTT), and pulse wave velocity 
(PWV) [1]. In particular the PAT is often of great practical 
interest as a BP surrogate since it can be obtained 
unobtrusively from sensors that are already part of many 
standard clinical workflows in the intensive care units (ICU) 
and the operating room (OR), e.g., from the electrocardiogram 
(ECG) and a photoplethysmogram (PPG) sensor on the 
patient’s finger. 

A central point of ongoing research is the mathematical 
relationship between beat-to-beat 𝐵𝑃(𝑡) and 𝑃𝐴𝑇(𝑡), and 
many models have been proposed. In this paper we consider a 
model of the form 

 𝑃𝐴𝑇(𝑡) = 𝑃𝐸𝑃 + 𝐿 ∙ 𝑓(𝐵𝑃(𝑡), 𝑄), (1) 

where the PAT is the sum of a positive pre-ejection period 
(PEP) and a positive PTT term which factorizes into the travel 
path length 𝐿 and BP-related function 𝑓(∙, 𝑄), with a set of 
parameters 𝑄. The parameters 𝑃𝐸𝑃, 𝐿, and 𝑄 are patient-
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specific and, with the exception of 𝐿, considered relatively 
slowly time-varying so that they could require personalization 
and re-calibration. Notice, that the term 1/𝑓(𝐵𝑃(𝑡), 𝑄) can 
also be thought of as the BP-dependent PWV. 

A fully specified model of the form of (1) can then be used in 
reverse to estimate the beat-to-beat surrogate BP from the PAT 

 𝐵𝑃𝑠𝑢𝑟𝑟(𝑡, 𝐾, 𝐿) = 𝑓−1 (
𝑃𝐴𝑇(𝑡) − 𝑃𝐸𝑃

𝐿
, 𝑄) (2) 

where 𝐾 = {𝑃𝐸𝑃, 𝑄} is the combined set of all slowly time-

varying parameters. 

Physical considerations [2] suggest that 𝑓(∙, 𝑄) is 

monotonically decreasing, i.e., that as the BP increases the 

PTT decreases (resp., the PWV increases), and we therefore 

choose to investigate the 3-parameter linear model of the form 

 𝑃𝐴𝑇 = 𝑘1 + 𝐿 ∙ (𝑘2 ∙ 𝐵𝑃 +  𝑘3) (3) 

with 𝐾𝑙𝑖𝑛𝑃𝑇𝑇 = {𝑘1, 𝑘2, 𝑘3} and constraint 𝑘2 < 0. Here, 𝑘1 is 
a model for PEP and 𝑘2 and 𝑘3 for the BP-PTT relationship. 

As an alternative we also consider the linear model in the 
PWV-domain 

 𝑃𝐴𝑇 = 𝑘4 +
𝐿

𝑘5 ∙ 𝐵𝑃 + 𝑘6

 (4) 

with 𝐾𝑙𝑖𝑛𝑃𝑊𝑉 = {𝑘4, 𝑘5, 𝑘6} and constraint 𝑘5 > 0. Here we 
dropped the explicit time-dependency from the notation.  

Considerable research effort has been devoted to BP surrogate 
parameter calibration techniques [3], and we expand in our 
article on the works of [4] and [5], which propose single-
parameter offset adaptation in linear and non-linear models.  

As in this prior work, we focus here solely on the scenario 
where the calibration data could be collected non-invasively 
and instantaneously, i.e., through a direct PAT observation 
immediately followed by a single oscillometric non-invasive 
blood pressure (NIBP) spot-check measurement, leading to a 

single pair of reference values {𝑃𝐴𝑇𝑟𝑒𝑓 , 𝐵𝑃𝑟𝑒𝑓}. This reference 

value pair then allows for the direct calibration of any single 
one parameter from the set 𝐾, while the remaining parameters 
must be population-based and constant. 

From a practical perspective we deem such a NIBP spot-check 
calibration preferable to techniques requiring extensive co-
operation of the patient, e.g., to facilitate posture changes to 
induce hydrostatic changes as in [6]. For the same reason we 
also do not consider calibration using information collected 
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over time through multiple NIBP oscillometry measurements 
as in [7]. 

Our specific research questions in this article are: 

1. What tracking performance can be achieved with an 
un-personalized PAT-based BP surrogate? 

2. Given a single calibration measurement, which of the 
surrogate parameters should be personalized to achieve 
the best BP tracking performance, and how does it 
compare to NIBP-only sample-and-hold tracking? 

3. Which of the tested PAT-BP models is preferred? 

Given the space constraints of this article we limit our 
investigation to the tracking of the systolic BP, though the 
techniques are equally applicable to the diastolic or mean 
arterial pressure. Moreover, we isolate the additional accuracy 
limitations of NIBP oscillometry by using pressure data from 
an invasive arterial line for this conceptual study. Furthermore, 
we derive the PAT from the arterial line waveform to omit the 
added complexities of photoplethysmography, e.g., motion 
artifacts. Lastly, we give here no consideration to a causal 
implementation of the techniques. 

II. METHODS 

A. Data collection 

The MEC-U ethical committee approved our study (St. 
Antonius Ziekenhuis, Koekoekslaan 1, 3430 EM Nieuwegein, 
NL. Approval W19.046), and it was carried out at the 
Elisabeth-Tweesteden Ziekenhuis hospital in Tilburg, NL. All 
patients gave their written informed consent for the 
investigation. 

The data set is a subset of the one we reported on in [8], and it 
was collected from 𝑃 = 15 patients (9 females) during surgery 
in the OR with an arterial line as standard of care. Exclusion 
criteria were neuro-trauma, obesity (BMI > 40), pregnancy, 
delirium, and a significant language barrier that prevented the 
patient from understanding the informed consent. The patients 
of this study had an age range from 19 to 91 years (μ=55.2, 
σ=19.8), and a BMI from 17.3 to 31.7 kg/m2 (μ=24.0, σ=3.7). 
The surgeries were vascular (5), and neuro (10). 

We invasively acquired the ABP waveform from an Edwards 
Lifesciences TruWave disposable pressure transducer 
(Edwards Lifesciences, Irvine, CA) at the radial site and the 3-
lead ECG signal with a Philips MP50 patient monitor (Philips 
Medizin Systeme, Böblingen, Germany) at a sampling rate of 
125 Hz and 500 Hz, respectively. The data were recorded on a 
laptop with custom data logger software. 

B. Data preparation 

We selected per patient 𝑆 = 5  segments of length 30 minutes 
with mostly artifact-free waveform data (see Figure 1 for an 
example). The systolic pressure peak for each heart beat (top 
panel, black dots) was manually annotated in the ABP 
waveform (light blue). Artifacts from the frequently occurring 
NIBP measurements on the same arm were omitted. In the 
center of the segment, 20 seconds worth of heart beats were 
marked as calibration beats (green dots), and their systolic 
ABP values were averaged to provide the calibration reference 

pressure 𝐵𝑃𝑟𝑒𝑓  (red dot), which in practice could be obtained 

non-invasively using BP oscillometry. 

In the ECG signal the R-peak was found for each beat and the 
PAT (Figure 1, bottom panel, black dots) was calculated to the 
50% point of the rising edge of the ABP waveform. Also here 
we mark the center 20 seconds as calibration beats (green 
dots), whose PAT values are averaged to provide the 
calibration reference value 𝑃𝐴𝑇𝑟𝑒𝑓  (red dot). 

 

Figure 1 Waveform segment example. Top: continuous ABP 

waveform (light blue) with marked systolic pressure peaks (black -  

evaluation beats, green - calibration beats), red -  reference point 

(BPref=116mmHg), pink - BP surrogate (lin. PTT model with 

L=0.8m, k1=157ms, k2=-1.0ms/m/mmHg, k3=207ms/m, 

RMSE=9.6mmHg). Bottom: beat-by-beat pulse arrival time (black - 

evaluation beats, green – calibration beats), red – reference point 

(PATref=231ms). 

C. Experiments 

We perform all experiments in a leave-one-patient-out fashion, 
i.e., we consider always one of the 15 patients as the test 
patient 𝑃𝑡𝑒𝑠𝑡 and the other 14 patients as the training 
population 𝑃𝑡𝑟𝑎𝑖𝑛 , from whom we derive any necessary 
population model parameters. 

As a performance metric we evaluate for each test recording 
the root mean squared error (RMSE) between the ground truth 
𝐵𝑃𝑒𝑣𝑎𝑙  of the evaluation beats (black dots in Figure 1, top 
panel), and the surrogate 𝐵𝑃𝑠𝑢𝑟𝑟  (pink dots). 

1) Baseline – NIBP sample-and-hold 

As a first baseline we employ a simple sample-and-hold 

strategy, i.e., we consider the reference BP measurement 

𝐵𝑃𝑟𝑒𝑓  of a segment of a test patient as surrogate for all 

evaluation beats of that segment. This personalized single 

parameter method “M1” does not employ any PAT-based 

information, and it is to represent the current state-of-the-art 

BP monitoring practice with fixed-interval oscillometry. 

M1: 𝐵𝑃𝑠𝑢𝑟𝑟 = 𝐵𝑃𝑟𝑒𝑓 (5) 

2) Linear PTT model 

We apply for each test patient an un-personalized linear PTT 

surrogate model “M2” according to (2) and (3). 
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M2: 𝐵𝑃𝑠𝑢𝑟𝑟(𝑃𝐴𝑇(𝑡), 𝐾𝑙𝑖𝑛𝑃𝑇𝑇, 𝐿) =
1

𝑘2
∗ (

𝑃𝐴𝑇(𝑡) − 𝑘1
∗

𝐿
− 𝑘3

∗) (6) 

The parameter set {𝑘1
∗, 𝑘2

∗, 𝑘3
∗} is obtained from the training 

patients’ data by minimizing the surrogate RMSE for all 

evaluation beats 𝑡 ∈ 𝑇 of all segments 𝑠 ∈ 𝑆 of all training 

patients 𝑝 ∈ 𝑃𝑡𝑟𝑎𝑖𝑛: 
{𝑘1

∗, 𝑘2
∗ , 𝑘3

∗}

= argmin
𝑘1,𝑘2,𝑘3

∑ (𝐵𝑃𝑒𝑣𝑎𝑙
𝑝,𝑠 (𝑡) − 𝐵𝑃𝑠𝑢𝑟𝑟( 𝑃𝐴𝑇𝑝,𝑠(𝑡), 𝐾𝑙𝑖𝑛𝑃𝐴𝑇, 𝐿𝑝))

2

∀𝑝,𝑠,𝑡

 (7) 

Here, 𝐿𝑝 is the travel path length (arm length) of patient 𝑝, and 

𝐵𝑃𝑒𝑣𝑎𝑙
𝑝,𝑠 (𝑡) and  𝑃𝐴𝑇𝑝,𝑠(𝑡) are the evaluation beats’ BP and 

PAT values of segment 𝑠 of patient 𝑝, respectively. The three-
dimensional linear least-squares optimization problem of (7) 
can be solved in closed form, and the obtained parameter 
values are then using in a PAT-based BP surrogate for the left-
out test patient. 

As outlined above, the central idea of this paper is the 
personalization of the BP surrogate to a patient through a spot 
check measurement, and we illustrate this process now with 
the example of personalizing the parameter 𝑘1 of (6). 

Here, using the training patients’ data, we have to find the 
optimum population-based un-personalized parameters  𝑘2

∗ 
and 𝑘3

∗, for the 𝑘1-personalized surrogate BP. This can be 
achieved by solving an optimization problem similar to (7) but 
where each signal segment receives its own optimum value 

𝑘1
𝑝,𝑠 ∗

 while we still have a single optimum 𝑘2
∗ and 𝑘3

∗ for the 

entire training population 

This is a 72-dimensional optimization problem as we search 
for  14∙5=70 𝑘1

∗-values, as well as the optimum population 
values for 𝑘2

∗  and 𝑘3
∗. For convenience, we solve this 

numerically using the Levenberg-Marquardt method with the 
constraints listed above and the starting values 𝑘1 of half the 
smallest PAT value in the training data, 𝑘2=50 ms/m/mmHg, 
and 𝑘3=0  ms/m. 

With the training population-based optimum values for 𝑘2
∗  and 

𝑘3
∗ at hand, and the reference measurements {𝑃𝐴𝑇𝑟𝑒𝑓 , 𝐵𝑃𝑟𝑒𝑓} 

of a test patient, we can now eliminate 𝑘1 

and complete (6), thereby forcing the surrogate BP time series 
through the reference BP point. In this particular case the 
parameter 𝑘3

∗ drops out and we arrive at the  𝑘1-personalized 
linear PAT surrogate model “M3”: 

M3: 𝐵𝑃𝑠𝑢𝑟𝑟 =
𝑃𝐴𝑇 − 𝑃𝐴𝑇𝑟𝑒𝑓

𝐿 ∙ 𝑘2
∗ + 𝐵𝑃𝑟𝑒𝑓 (10) 

The development of personalized models for other parameters 
in the linear PTT model follows along the same lines, i.e., the 
personalization of parameter 𝑘2 in (6) through the reference 
measurement 

 𝑘2 =
1

𝐵𝑃𝑟𝑒𝑓

(
𝑃𝐴𝑇𝑟𝑒𝑓 − 𝑘1

𝐿
− 𝑘3) (11) 

requires first finding training population-based 𝑘1
∗ and 𝑘3

∗ that 
are optimal under 𝑘2-personalization 

{𝑘1
∗, 𝑘2

𝑃𝑥𝑆,∗, 𝑘3
∗}

= argmin
𝑘1,𝑘2

𝑃𝑥𝑆,𝑘3

∑ (𝐵𝑃𝑒𝑣𝑎𝑙
𝑝,𝑠 (𝑡) − 𝐵𝑃𝑠𝑢𝑟𝑟( 𝑃𝐴𝑇𝑝,𝑠(𝑡), {𝑘1, 𝑘2

𝑝,𝑠
, 𝑘3}, 𝐿𝑝))

2

∀𝑝,𝑠,𝑡

 (12) 

and leads to surrogate model “M4”: 

M4: 𝐵𝑃𝑠𝑢𝑟𝑟 =
𝑃𝐴𝑇 − 𝑘1

∗ − 𝐿 ∙ 𝑘3
∗

𝑃𝐴𝑇𝑟𝑒𝑓 − 𝑘1
∗ − 𝐿 ∙ 𝑘3

∗ 𝐵𝑃𝑟𝑒𝑓 (13) 

Finally, the personalization of the parameter 𝑘3 in Eq. (6)  

 𝑘3 =
𝑃𝐴𝑇𝑟𝑒𝑓 − 𝑘1

𝐿
− 𝑘2  ∙ 𝐵𝑃𝑟𝑒𝑓 (14) 

leads to 

 𝐵𝑃𝑠𝑢𝑟𝑟 =
𝑃𝐴𝑇 − 𝑃𝐴𝑇𝑟𝑒𝑓

𝐿 ∙ 𝑘2
∗ + 𝐵𝑃𝑟𝑒𝑓 (15) 

which is identical to model “M3”, and does not need to be 
considered separately. 

As a performance bound we also compute the optimal linear 
model “M5” for each test data segment by fitting a linear 
model directly to the evaluation 𝐵𝑃𝑒𝑣𝑎𝑙  and 𝑃𝐴𝑇 data points. 
This model is, of course, not available in practice since it 
would require continuous BP data to create. However, it does 
provide a bound on the best achievable predictive capabilities 
of the linear PTT surrogate model of form (3). 

3) Linear PWV model 
We start by re-writing equations (2) and (4) as 

 𝐵𝑃𝑠𝑢𝑟𝑟(𝑃𝐴𝑇(𝑡), 𝐾𝑙𝑖𝑛𝑃𝑊𝑉, 𝐿) =
1

𝑘5

∙ (
𝐿

𝑃𝐴𝑇(𝑡) − 𝑘4

− 𝑘6). (16) 

As a safeguard against the denominator “𝑃𝐴𝑇 − 𝑘3” 
becoming zero during evaluation or parameter optimization 
we modify this model by introducing the differentiable 
softplus function 

 sp𝛾(𝑥) = 𝛾 ∙ log (1 + exp (
𝑥

𝛾
)) (17) 

in denominator, and a small constant term 𝜀 which leads to  

 𝐵𝑃𝑠𝑢𝑟𝑟(𝑃𝐴𝑇(𝑡), 𝐾𝑙𝑖𝑛𝑃𝑊𝑉, 𝐿) =
1

𝑘5

∙ (
𝐿

sp𝛾(𝑃𝐴𝑇 − 𝑘4) + 𝜀
− 𝑘6) (18) 

and we choose 𝛾 = 𝜀 = 1𝑚𝑠. 

In the same spirit as in previous section we derive for each 
patient an un-personalized model “M6”, the models “M7”, 
“M8”, and “M9” for the personalization of the parameters 𝑘4, 
𝑘5, and 𝑘6, respectively, as well as the optimum bound model 
“M10.” 

III. RESULTS 

 

Figure 2 BP estimation RMSE performance of the blood pressure 

surrogate for the 10 models. For each model we have 45 data points 

(from 15 patients with 5 segments each; marked with red dots), the 

box plot, and the average RMSE (black dots). 

{𝑘1
𝑃𝑥𝑆,∗, 𝑘2

∗ , 𝑘3
∗}

= argmin
𝑘1

𝑃𝑥𝑆,𝑘2,𝑘3

∑ (𝐵𝑃𝑒𝑣𝑎𝑙
𝑝,𝑠 (𝑡) − 𝐵𝑃𝑠𝑢𝑟𝑟( 𝑃𝐴𝑇𝑝,𝑠(𝑡), {𝑘1

𝑝,𝑠
, 𝑘2, 𝑘3}, 𝐿𝑝))

2

∀𝑝,𝑠,𝑡

 (8) 

 𝑘1 = 𝑃𝐴𝑇𝑟𝑒𝑓 − 𝐿 ∙ (𝑘2
∗ ∙ 𝐵𝑃𝑟𝑒𝑓 + 𝑘3

∗) (9) 
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The achieved performance of the 10 models is visualized in 
Figure 2, and the numerical values are listed in Table 1. The 
best performing personalized linear PTT model is “M3”, with 
personalized 𝑘1 (μ=86.7x10-3, σ=29.7 x10-3) s, and the 
population based 𝑘2

∗ (μ=-1.05x10-3, σ=0.12x10-3) s/m/mmHg, 
where mean μ and standard deviation σ  are computed over the 
leave-one-patient-out runs. This model achieves an average 
estimation RMSE of 8.7 mmHg. 

Table 1 Surrogate BP estimation performance for the 10 models. 

Model 

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 RMSE 

[mmHg] 

Mean 11.5 18 8.7 10 5.3 17.2 8.2 8 7.8 5.3 

STD 12.6 11.9 8.9 10.7 4.2 12.7 8.2 7.3 7.4 4.1 

Min 2.8 5.3 1.9 1.6 1.4 4.7 1.5 1.5 1.5 1.4 

Median 6.6 16.4 5.5 5.9 4 13.3 5.9 5.6 5.2 4 

Max 65.1 64.9 46.4 46.4 24.3 65.5 47.5 39.4 39.1 22.8 
 

The best performing linear PWV model is “M9” , with the 
personalized parameter 𝑘6 (μ=1.82, σ=0.41) m/s  and the 
population parameters 𝑘4

∗ (μ=3.4x10-8, σ=1.4x10-8) s, and 𝑘5
∗ 

(μ=10.9 x10-3, σ=0.39x10-3) m/s/mmHg. This model achieves 
an average estimation RMSE of 7.8 mmHg. 

IV. DISCUSSION 

We find that the un-personalized PAT-based surrogate models 
“M2” (RMSE=18 mmHg) and “M6” (RMSE=17.2 mmHg) 
perform significantly worse than the surrogate-free sample-
and-hold method “M1” (RMSE=11.5 mmHg), which is 
somewhat indicative of current clinical practice using NIBP 
alone. The performance loss is 6.5 mmHg and 5.7 mmHg, 
respectively, and these effects are highly statistically 
significant with p<10-5 and p<10-3. Here it is better not to use 
a PAT-based surrogate at all. 

With single parameter personalization by means of a one-time 
reference BP measurement the situation changes drastically, 
and all personalized PAT-based surrogate models “M3, “M4,” 
and “M7” – “M9” outperform the sample-and-hold approach 
of “M1” significantly (p<0.05). 

The best personalized linear PTT model “M3” reduces the 
estimation error to 8.7 mmHg. The best personalized linear 
PWV model “M9,” on the other hand, achieves an even lower 
estimation RMSE of 7.8 mmHg. 

The choice of how to personalize a model, i.e., which 
parameter to adapt, can also matter significantly. The two 
personalized linear PAT models “M3” and “M4” differ by 1.3 
mmHg in performance (p=0.01), and we conclude that it is 
better to personalize the 𝑘1 parameter than the 𝑘2 parameter. 

Similarly, the linear PWV models “M7” – “M9” differ in their 
achieved performance by up to 0.4 mmHg though their 
differences are not statistically significant. We can therefore 
give no strong recommendation as to which of the parameters 
{𝑘4, 𝑘5, 𝑘6} to personalize. 

We can also see that large room for improvement exist for both 
model types since the inherent limitation of the surrogate with 
linear PTT and linear PWV models is 5.3 mmHg as evidenced 

by the hypothetical models “M5” and “M10”. We can, 
however, not devise how to establish these optimum models 
for a patient in a non-invasive fashion.  

Lastly, we want to remind the reader that all our computational 
experiments were conducted under somewhat idealized 
conditions because we excluded the influence of the limited 
accuracy of the NIBP oscillometry as well as any complexity 
arising from the use of the PPG signal to measure PAT in 
practice. Hence, the practically achievable performance will 
naturally be worse than what we report here. 

The BP tracking performance can, however, always be 
improved by shortening the tracking time horizons, i.e., by re-
calibrating more frequently. The price for this solution is then 
a reduction in patient comfort. 

V. CONCLUSION 

Our experiments with BP and PAT data from the OR indicate 

that model parameter personalization is key to realizing a 

tracking performance benefit of PAT-based BP surrogates. 

The highest tracking error reduction of about 3.7 mmHg with 

respect to a current state-of-the-art  sample-and-hold 

approach over a 30 minute time window was achieved 

through one-parameter personalization of a linear PWV-to-

BP model. This model achieves a tracking error of 7.8 mmHg. 
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