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Abstract— Multi-scale architectures at a granular level are
characterised by separating input features into groups and ap-
plying multi-scale feature extractions to the split input features,
and thus the correlations among the input features as global
information are no longer retained. Moreover, they usually re-
quire more input features due to the separation, and therefore,
more complexity is introduced. To retain the global information
while utilising the advantages of feature-level hierarchical
multi-scale architectures, we propose a multi-scale aggregated-
dilation architecture (MSAD) to perform hierarchical fusion
of features at a layer level, with the integration of dilated
convolutions to overcome these issues. To evaluate the model,
we integrate it into ResNet, and apply it to a unique dataset,
containing over 60,000 fluorescence lifetime endomicroscopic
images (FLIM) collected on ex-vivo lung normal/cancerous
tissues from 14 patients, by a custom fibre-based FLIM system.
To evaluate the performance of our proposal, we use accuracy,
precision, recall, and AUC. We first compare our MSAD
model with eight networks achieving a superiority over 6%.
To illustrate the advantages and disadvantages of multi-scale
architectures at layer and feature-level, we thoroughly compare
our MSAD model with the state-of-the-art feature-level multi-
scale network, namely Res2Net, in terms of parameters, scales,
and effective convolutions.

I. INTRODUCTION

Fluorescence lifetime is a unique characteristic of fluo-
rophore, which is independent of its intensity, but sensitive
to various internal and external factors, such as fluorophore
structure and its biological environment. Due to its high sen-
sitivity and diversity, tissue lifetime contrast has been utilised
to differentiate human diseases [1]. Various FLIM systems
have been applied to detect cancer and other conditions [2].
Conventionally, statistical methods dominated the discrimi-
nation of cancerous tissue, with the assistance of auxiliary
information, e.g. histopathological images. Surprisingly, little
attention has been paid to FLIM-based cancer differentiation
using ML technologies. In Chen et al. [3], artificial features
extracted from lifetime reconstruction were used for the
automatic detection of skin lesions by a support vector
machine (SVM). Jo et al. [4] used quadratic discriminant
analysis to classify malignant and benign oral cancer lesions
with six FLIM-based features. Authors also made some effort
in applying ML methods. In [5], four ML algorithms, namely
K-nearest neighbour, SVM, neural network, and random
forest, were applied to FLIM images directly, yielded AUC
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scores below 0.78. Later, several classic convolutional neural
networks (CNNs) were applied to evaluate the performance
of deep learning on a FLIM dataset [6]. This research
demonstrated, without surprise, that deep learning is superior
to conventional ML methods. It also proved that combining
intensity and lifetime together as the input, improves the
prediction.

In contemporary CNNs, multi-scale architectures have
been broadly applied [7], [8], [9], due to its capability of
extracting and fusing features rich in spatial and contextual
information. Multi-scale styles can be roughly categorised
into three groups: architecture-level, layer-level, and feature-
level aggregation, which are different in complexity, flexi-
bility, and reusability. Architecture-level aggregation usually
deals with multiple inputs [10], and thus, it is relatively
rigid and complex. Layer-level aggregation parallels multiple
convolutions in a block to retrieve features at different scales,
like in Inception [7], which usually requires more computa-
tional time and resources due to extra convolutions appended.
Feature-level aggregation usually concerns the subsets of
input features, e.g. group convolution and its variants [11],
[12], but correlations among features are ignored.

Here, we propose a novel CNN architecture, namely
MSAD, that integrates the advantages of layer-level feature
aggregation, feature-level multi-scale feature extraction, and
dilated convolutions. We parallel a number of 3×3 convo-
lutions with distinctive dilation rates at a layer-level, and
introduce an extra aggregation before the convolutions to
fuse the features extracted from previous dilated convolutions
with the global features at layer-level. In addition, an identity
shortcut is also presented to improve the flow of information
and gradient. By incorporating the proposed block into
ResNet [13], we apply the model, combining different types
of filters with various numbers of dilated convolutions, to
over 60,000 FLIM images collected ex-vivo on 14 pairs of
normal/cancerous tissues from 14 patients by a fibre-based
custom FLIM system. Accuracy, precision, recall, and AUC
are utilised as metrics. To fully evaluate the performance of
the model, we compare it with eight state-of-the-art CNNs:
ResNet, ResNeXt [14], DenseNet [15], Inception-v3 [16],
Xception [12], SENet [17], Res2Net [8], and Res2NeXt [8].

To emphasise the novelty of the proposed model, we list
the primary differences between ours and feature-level multi-
scale models, particularly Res2Net [8] and FPENet [9]:

• In feature-level multi-scale models, such as ResNeXt
and Res2Net, input features are split into several groups
and multi-scale feature extraction is performed on the
individual groups. In contrast, our model processes
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input features altogether to retain the correlations;
• Feature level models, particularly Res2Net, eliminate

feature redundancy of ResNet and create new features
by combining separation and hierarchical aggregation,
whereas our model achieves the elimination via much
narrower backbones and the creation by the aggregation;

• Due to separation, feature-level multi-scale architectures
require more input features than our model to maintain
the width and scale. Consequently, they are usually
more complex than ours. For example, our model has
up to 20% fewer parameters than Res2Net, given the
same settings, but with comparable results; and

• Res2Net employed standard 3×3 convolutions for
multi-scale features extraction, and FPENet used depth-
wise dilated convolutions, whereas ours utilised 3×3
dilated convolutions.

The rest of the paper is organised as follows. Section II
introduces the technical details of our method. The results
are presented in Section III, followed by the conclusions and
future work in Section IV.

II. METHODOLOGY

Fig. 1 depicts the overall procedure of our approach. Raw
data was collected ex-vivo using a custom fibre-based FLIM
system on pairs of normal/cancerous tissues from individual
patients (Step 1). Afterwards, the collected images are pre-
processed for quality enhancement. Later, intensity and life-
time images are stacked as the input to the MSAD network
(Step 2). Eventually, the stacked images are classified by the
proposed model (Step 3).

A. Image Collection

A custom fibre-based FLIM system was deployed to
collect data (Fig. 1, step 1). Settings included two exposure
times (6 and 20 µs) and two spectral bands (498-570
and 594-764 nm). Lifetime values were calculated using
rapid lifetime determination (RLD) [18]. For each ex-vivo
experiment, a pair of normal/cancerous tissues from a patient
were scanned, and multiple measurements were collected at
different physical points by direct contact of the fibre with
the tissue.

Fig. 1, step 2 shows the pre-processing steps. To derive
plausible lifetime from intensity using the RLD method,
optimal signal-noise ratio (SNR) of the intensity is needed.
In this study, we used a threshold value

√
Î related to SNR,

where Î is the mean of the measured intensity. A fluorescence
intensity greater than

√
Î is required to perform a lifetime

calculation of acceptable accuracy. Afterwards, the thresh-
olded intensity images are normalised with dark background
and lightfield images. The normalisation is adapted from
[19]. Later, a histogram-based contrast enhancement [20] is
applied to the normalised images to further improve their
quality. Then, the contrast-enhanced intensity image is used
as a mask on the thresholded lifetime image to yield the
pre-processed intensity and corresponding lifetime images.
Eventually, an intensity and its lifetime image are stacked

into two channels of an RGB image, keeping the remaining
channel blank, which are the input to the MSAD model.

B. Multi-Scale Aggregated-Dilation Architecture
As shown in Fig. 1 (right side of Step 3), the proposed

MSAD architecture parallels several 3×3 convolutions with
different dilation rates in order for multi-scale contextual
features to be retrieved simultaneously. Similar to [8] and
[9], aggregation is introduced to fuse the information from
the previous branch, so that, both layer-level global features
and branch-wise local features can be considered together.
Following the ideas of [13], an identity shortcut is also
employed, together with the aggregation operator to improve
the flow of information and gradient throughout the block.

Let di(ri) denote the ith branch in the MSAD block with
dilation rate ri, and I and O are the input and output of the
block. Therefore, O can be defined as:

O = B([I, d0(r0), ..., dn(rn)]) (1)

where [I, d0(r0), ..., dn(rn)] is the concatenation of all
branch-wise outputs, and B is a composite operation contain-
ing a 3×3 convolution, batch normalisation [21], followed
by a rectified linear unit [22]. Suppose the receptive field of
di−1(ri−1) is fi−1, the output from di(ri), therefore, reflects
the aggregated receptive field of (ri − 1) ∗ 2 + 3 from I and
((ri − 1) ∗ 2 + 3) ∗ fi−1 from di−1(ri−1). Taking the model
in Fig. 1 as an example, the concatenated features include
four parts from I and the parallel dilated convolutions, and
thus are rich in scale and contextual information.

In this study, we use ResNet50 as the backbone network,
by only replacing the original bottleneck block with the
MSAD block. Following [13], [14], and [8], we use w
as the width in the MSAD block, and s as the scale for
the number of parallel dilated convolutions. For example,
MSAD-ResNet50-w40-s2 represents the MSAD based on
ResNet50, with width 40 and scale 2. Considering that a
shortcut connection is included in the module, the dilation
rate of each branch in a MSAD module is in the subset
of the first s-1 elements of (1, 2, 3, 5, 7, 9, 11, 13, 15).
For example, given s equal to 4, there have three dilated
convolutions in the module, and the dilation rate for each
convolution is 1, 3, and 5, respectively. All MSAD variations
and the classic models are implemented using PyTorch.
In addition, we also evaluate eight CNNs for comparison
purposes: ResNet50, ResNeXt50, DenseNet121, Inception-
v3, Xception, SENet50, Res2Net50, and Res2NeXt50.

C. Training and Testing
13 patients’ images were utilised for training and the

remaining one patient dataset for testing. 10% of training
data was split out for validation. All models were trained with
stochastic gradient descent for 200 epochs of batch size 64.
The learning rate was set to 0.1, and divided by 10 at epoch
100 and 150. In addition, we also employed weight decay
1e-4. For data augmentation, we utilised a strategy reported
in [13], [15], and [8], except that vertical flipping was also
applied. It is worth noting that all models, including the
classic CNNs, were trained from scratch for fair comparison.
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Fig. 1. Schematic diagram of the methodology.

TABLE I
PERFORMANCE COMPARISON. OVERALL BEST RESULTS ARE IN BOLD.

Accuracy Precision Recall AUC Params
ResNet50 83.14 95.40 80.77 85.12 23.5
ResNeXt50 84.66 95.58 80.75 87.92 23.0
DenseNet121 80.43 95.22 76.96 83.33 7.0
Inception 83.61 96.99 78.04 88.26 21.8
Xception 83.24 96.67 78.29 87.37 20.8
SENet50 84.07 94.32 83.10 84.88 26.0
Res2Net50 84.35 93.89 80.89 88.26 23.7
Res2NeXt50 84.18 95.36 80.32 87.40 22.6
MSAD-ResNet50-w40-s2 84.81 98.83 83.06 88.76 18.3
MSAD-ResNet50-w24-s4 85.91 97.97 82.34 88.89 18.8
MSAD-ResNet50-w24-s6 86.88 98.01 83.61 89.61 25.8

Fig. 2. ROC curves generated by the networks listed in Table I.

III. RESULTS

A. Overall performance

The resultant scores, including accuracy, precision, recall,
and AUC, along with the complexity of the models, are
listed in Table I, and ROC curves are plotted in Fig. 2. In
general, all classic CNNs have a comparable performance in
all the metrics. Overall, our MSAD model is superior to all
the classic CNNs evaluated. For accuracy, all three MSAD
models outperform the classic CNNs, with a gap of up
to 6.45%. In particular, MSAD-ResNet50-w40-s2 surpasses
the backbone ResNet50 for 1.65%, but only with 18.3M
parameters, over 22% parameters less than the backbone.
Similar results can also be found on precision, where all three

models are better than the classic CNNs. In this case, MSAD-
ResNet50-w40-s2 achieves the best precision, with up to 5%
superiority. It is worth mentioning that all networks perform
very well on precision, where the majority of them reach over
95%. This means that there is only a small number of normal-
tissue images that are incorrectly classified as cancerous
ones. As far as recall is concerned, our model still obtains
remarkable outcomes. MSAD-ResNet50-w24-s6 is the best
one on recall, and the rest two models are superior to all the
CNNs, except for SENet50. As a result, MSAD is better than
the evaluated CNNs with less number of cancerous images
wrongly predicted to normal ones. When it comes to AUC,
our proposed model has similar performance on accuracy and
precision, where all three variations outperform the classic
ones, and the discrepancy is up to 6.28%.

B. MSAD-ResNet vs Res2Net

Since MSAD is mainly inspired by Res2Net, we include a
comparison of both models. We adapted the original Res2Net
with dilated convolutions, so that the comparison is fair. We
only replace the dilation rates in Res2Net with the identical
ones used in our model. To fully evaluate the advantages and
disadvantages of the hierarchical multi-scale architectures
at layer and feature levels, we conducted experiments on
parameter, scale, and convolution efficiency.

Parameter efficiency. To evaluate the parameter effi-
ciency of our model and Res2Net, we conduct the exper-
iments on five pairs of models, where each pair is identical
in settings. The results are depicted in Fig. 3, where the first
impression is that, given the same settings, Res2Net requires
more parameters than MSAD-ResNet. The gap becomes
larger with wider and deeper backbone ResNet, which can
be up to 24%. For accuracy (first plot in Fig. 3), the MSAD
model is more parameter efficient than Res2Net, although the
best accuracy is achieved by Res2Net. As far as precision
is concerned (second plot in Fig. 3), Res2Net performs
better than the MSAD, where the networks are relatively
simple with less than 5M parameters. With the increase of
complexity, MSAD-ResNet becomes superior to Res2Net,
and it yields the best precision overall, meaning it is better at
providing correct prediction of cancer tissue. When it comes
to recall (third plot in Fig. 3), MSAD-ResNet is remarkably
better than Res2Net, particularly when they are relatively
simple, and the gap can be over 8%. This indicates that the
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Fig. 3. Parameter efficiency of MSAD-ResNet and Res2Net.

MSAD architecture makes less error on predicting unhealthy
to healthy tissue. The situation changes on AUC (fourth plot
in Fig. 3), where Res2Net outperforms MSAD-ResNet, again
in less complex configurations, although MSAD-ResNet is
able to achieve the overall best AUC.

Scale efficiency. To compare the scale efficiency of our
model and Res2Net, we use ResNet38-s32 as the backbone
with identical settings. Five different scales, 2, 3, 4, 5, and
6, are evaluated. Fig. 4 depicts the impact of scale on the
metrics, where ResNet38-w32 (red diamond in Fig. 4) is
utilised as the baseline. As far as accuracy is concerned
(first plot in Fig. 4), MSAD-ResNet is superior to Res2Net
on scale 2 and 4, but inferior to Res2Net on scale 3, 5,
and 6. For precision (second plot in Fig. 4), the situation
changes. Our proposal surpasses Res2Net at scale 5 and
6, but Res2Net surpasses our proposal at scale 2, 3, and
4. This implies that Res2Net is more efficient on precision
at a small scale, whereas MSAD-ResNet is better at larger
scale. When it comes to recall (third plot in Fig. 4), the
performance of Res2Net deteriorates dramatically, and with
scales 2, 3, and 4, Res2Net is even worse than the baseline.
With scales smaller than 5, MSAD-ResNet is significantly
better than Res2Net, with a gap that can be over 6%. For
scales 5 and 6, Res2Net outperforms MSAD-ResNet. The
results on AUC (fourth plot in Fig. 4), are similar to those
on precision. Res2Net achieves better outcomes with smaller
scales, whereas MSAD-ResNet achieves better outcome with
larger scales. In summary, on accuracy and recall, our MSAD
model obtains higher scores with small scales. In contrast,
Res2Net with small scales reaches higher scores on precision
and AUC.

Convolution efficiency. Due to the hierarchical multi-
scale architecture, both MSAD-ResNet and Res2Net intro-
duce more convolution operations than the backbone, and
this extra number becomes dramatic at a large scale. There-
fore, it is important to evaluate the influence of the number
of effective convolutions on the metrics. The results are
illustrated in Fig. 5, where ResNet-w32 with different widths
is used as the baseline. Overall, both networks outperform the
backbone ResNet. On accuracy (first plot in Fig. 4), MSAD-
ResNet outperforms Res2Net, except for the first variation.
Note that Res2Net is even worse than the baseline when
the effective number of convolutions is over 100. When it
comes to precision (second plot in Fig. 4), MSAD-ResNet
is comparable to Res2Net, although Res2Net is inferior to

the baseline ResNet with over 100 effective convolutions.
The results on recall are similar to those on accuracy,
where MSAD-ResNet is over Res2Net, except for the case
with over 100 effective convolutions, which is even worse
than the baseline. When it comes to AUC (fourth plot in
Fig. 4), MSAD-ResNet still surpasses Res2Net, except for
the case with 42 convolutions. It is worth noting that Res2Net
struggles outperforming the baseline in most cases on AUC.
In conclusion, the MSAD model is superior to Res2Net in the
number of effective convolutional operations for all metrics.

IV. CONCLUSIONS

In this study, we proposed a multi-scale architecture
called MSAD. With ResNet as the backbone, we applied
the proposed model to ex-vivo cancer discrimination us-
ing FLIM endomicroscopic images. The empirical results
demonstrated the superiority of the proposed network over
eight state-of-the-art CNNs for lung cancer classification
with FLIM images. Since our model is inspired by feature-
level multi-scale architectures, particularly Res2Net, we thor-
oughly compared our MSAD model with Res2Net, adapted
with dilated convolutions in terms of parameter, scale, and
convolution efficiency. Through the results, we can conclude
that the MSAD model is more parameter efficient than
Res2Net on accuracy, precision, and recall, but less on AUC.
Moreover, MSAD-ResNet performs better with small scales
on accuracy and recall, whereas Res2Net performs better
with small scales on precision and AUC. In addition, the
proposed model is overall superior to Res2Net with respect
to effective convolutions, although there are few cases where
our proposal is inferior to Res2Net.

It is worth noting that the proposed MSAD architecture
is not designed specifically for FLIM-based lung cancer
classification. Instead, it is expected to be also applicable
to general image classification problems. As a result, future
work will be conducted on migrating the model to general
visual recognition tasks. In addition, the concepts within
MSAD could also be applied to more complex computer
vision problems, such as semantic segmentation. For this
reason, we will also extend our research on this direction.
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Fig. 4. Scale efficiency of MSAD-ResNet and Res2Net with different scales on the metrics, where ResNet38 is used as the backbone.

Fig. 5. Convolution efficiency of MSAD-ResNet and Res2Net, with ResNet of different depths as the baseline.
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