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Abstract— The electrodermal activity (EDA) signal is a 

sensitive and non-invasive surrogate measure of sympathetic 

function. Use of EDA has increased in popularity in recent years 

for such applications as emotion and stress recognition; 

assessment of pain, fatigue, and sleepiness; diagnosis of 

depression and epilepsy; and other uses. Recently, there have 

been several studies using ambulatory EDA recordings, which 

are often quite useful for analysis of many physiological 

conditions. Because ambulatory monitoring uses wearable 

devices, EDA signals are often affected by noise and motion 

artifacts. An automated noise and motion artifact detection 

algorithm is therefore of utmost importance for accurate 

analysis and evaluation of EDA signals. In this paper, we present 

machine learning-based algorithms for motion artifact detection 

in EDA signals. With ten subjects, we collected two simultaneous 

EDA signals from the right and left hands, while instructing the 

subjects to move only the right hand. Using these data, we 

proposed a cross-correlation-based approach for non-biased 

labeling of EDA data segments. A set of statistical, spectral and 

model-based features were calculated which were then subjected 

to a feature selection algorithm. Finally, we trained and 

validated several machine learning methods using a leave-one-

subject-out approach. The classification accuracy of the 

developed model was 83.85% with a standard deviation of 

4.91%, which was better than a recent standard method that we 

considered for comparison to our algorithm. 

I. INTRODUCTION 

Electrodermal activity (EDA) represents changes in 
electrical conductance of the skin due to opening of sweat 
pores [1], [2]. It is believed that EDA represents sudomotor 
activities, as they are innervated by sympathetic C nerve fibers 
of the autonomic nervous system. Therefore, EDA has the 
potential to be used for the evaluation of sympathetic nervous 
function and cognitive arousal [3]–[7]. Due to ease of use and 
noninvasive data collection, EDA has been applied in many 
diverse areas including emotional arousal [8], decision-
making [9], pain [10], [11], stress [12], autism [13], and panic 
disorder [14], as these are all related to elevation of 
sympathetic nervous activities. 

While EDA has potential to be used as a peripheral 
sympathetic nervous activity marker, it has some limitations. 
For example, EDA can be affected by non-sympathetic factors 
such as atmospheric temperature and humidity [15]. Most of 
the traditional EDA studies were performed carefully in a 
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controlled laboratory setting with limited movement of the 
subjects in order to minimize the effect of motion artifacts and 
noise. However, recently there have been a large number of 
studies of ambulatory EDA data collection over long time 
periods using wearable devices [7]. Wearable devices are more 
prone to noise and artifacts [16] and EDA is not immune from 
this issue.  Noise and motion artifacts can be generated from 
different sources such as poor contact between skin and the 
recording electrodes, movements that cause variations in the 
skin-electrode contact, intentional or unintentional touching of 
electrodes (e.g. autistic people might be prone to the latter), 
and contextual factors (e.g. temperature and humidity) that 
may cause excessive sweating. Therefore, for accurate 
evaluation of EDA signals, corrupted segments should be 
automatically identified and removed.  

Despite an increasing volume of EDA research over the 
last decades, there has been only a handful of research papers 
on motion artifact detection in EDA. Many researchers used 
either exponential smoothing [17] or low pass filtering [18] to 
combat noise and motion artifacts. These techniques may 
smooth high variations in the signal; however, they cannot 
compensate for sudden and large-magnitude motion artifacts 
which are often present in EDA signals, especially in 
ambulatory recordings. There have been some heuristic 
methods [18] to remove motion artifacts in EDA. However, all 
the methods were developed on a specific dataset, hence, their 
performance becomes ineffective for untrained datasets. 
Taylor et al. [19] developed a machine learning algorithm 
using the support vector machine (SVM) classifier. They have 
used manually annotated EDA segments and extracted 
different statistical features to train an SVM classifier. Ian et 
al. [20] proposed a simple EDA quality assessment procedure 
based on some simple decision rules. While this method works 
for spiky and large amplitude motion artifacts, it fails in 
several other cases.  

It should be noted that unlike other biosignals, such as 
electrocardiogram (ECG) and photoplethysmography (PPG), 
EDA does not exhibit periodicity. Hence, manual adjudication 
of clean versus noisy EDA can be rather tricky.  In order to 
avoid this issue, we propose an automated correlation-based 
annotation criterion to determine if an EDA data segment is 
clean or noisy. Certainly, this is not a practical solution since 
this scheme will require a stationary reference signal.  
However, for our purpose in this work, this approach was used 
to determine clean versus noisy data.  Finally, based on the 
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adjudicated data from the cross-correlation scheme, we 
developed a machine learning algorithm to identify the noisy 
EDA segments using several statistical and model-based 
features.  This machine learning is the ultimate outcome of an 
automated way of adjudicating clean versus noisy data in 
practice. 

II. METHODS AND MATERIALS 

A. Data Collection 

Ten healthy subjects, aged 20-35, participated in this study. 
Two channels of simultaneous EDA were collected from the 
right and left hands using ADInstrument’s galvanic skin 
response modules. On each hand, a pair of stainless-steel 
electrodes were placed on index and middle fingers. The EDA 
signals were recorded at a sampling frequency of 1,000 Hz, 
then down-sampled to 8 Hz. The data collection protocols 
were designed so that the right hand made occasional 
movements to mimic regular motion artifacts people could 
create in their daily lives while the left hand was immobile in 
order to provide a reference EDA. All the experimental 
procedures were approved by the Institutional Review Board 
(IRB) for human subject research at The University of 
Connecticut and a written consent was collected from all the 
subjects before the experiment. A summary of the protocol is 
shown in Table I. The protocol consists of two parts, where the 
first part was done with no significant motion and the second 

part was designed to mimic different motion artifacts. 

B. Data Labeling 

As mentioned earlier, EDA data quality labeling can be 
difficult given the non-conventional characteristics of EDA 
signals, hence, observers’ adjudications can be incorrect. To 
avoid human adjudication bias, we propose a cross-correlation 
coefficient-based criterion to annotate EDA segments as either 
noisy or clean. EDA data were first segmented into 1692 non-
overlapping 5-second windows. We computed the cross-
correlation coefficient between each of the simultaneous 

reference (from the left hand) EDA segments and the targeted 
EDA segments (from the right hand). If the correlation 
coefficient exceeded 0.85, we considered this targeted EDA 
segment as clean, otherwise it was considered noisy. Please 
note that the reference signal can be noisy occasionally 
because of intentional or unintentional movements. Therefore, 
we first manually checked the reference and marked the 
obviously noisy portions of EDA. For this purpose, we used 
three independent reviewers’ annotations; any segment that 
was marked as noisy by any of the three reviewers was 
discarded from the analysis unless there was a very high 
correlation (> 0.95) between the reference and the target EDA 
segment. Fig. 1 shows an example of two simultaneous EDA 
channels (target EDA and reference EDA), their 
corresponding cross-correlation coefficient, and the observers’ 
annotation for the reference EDA. It can be seen from Fig.1 
that the correlation coefficient follows the target EDA, 
meaning that when there is noise in the target EDA the 
correlation coefficient is low, and vice versa. 

TABLE I.  DATA COLLECTION PROTOCOL SUMMARY 

Duration 

(second) 
Activity Remarks 

Part I (Stress Test) 

120 Flat table, relaxing with eyes closed Baseline 

30 Start table tilt 

Orthostatic 

Stress 

120 Subject remains in tilted position 

150 
Return table to flat position, subject 

relaxation 

120 Perform Stroop test 
Cognitive 

Stress 

Part II (Motion Artifact Test) 

60 Sitting up in a chair with no movement 

Motion 

Artifact 
Induction 

60 Sitting down and typing on the computer 

60 
Sitting down and holding a mouse, clicking 
the mouse 

60 Standing up with the arm next to torso 

60 
Standing up swinging arm by the side as if to 

simulate walking 

60 
Standing up with arm straight out, moving 
arm up and down continuously 

60 

Standing up with arm straight out moving the 

arm at the elbow allowing the wrist to come 
into the chest and straight out and do the 

same again. 

60 
Standing up with arm straight, completing a 
circle with the fingertips by rolling the 

shoulder. 

 

C. Feature Extraction 

We computed a set of features from each of the 5 second 

EDA window segments. First, we computed different 

statistical features from the original EDA, and its first and 

second derivative. We modeled the EDA sequence using an 

autoregressive (AR) model and considered 2 AR parameters 

(𝑎1 𝑎𝑛𝑑 𝑎2) and the AR noise variance as features. The 

motivation behind including AR modelling is that when EDA 

data are corrupted by noise, there will be more residual noise 

in the AR model than in the clean data; similarly, both AR 

parameters will have greater values for the noisy than clean 

data. 

 

 
Figure 1.  Noisy EDA channel (right hand), clean or reference EDA 

(left hand), correlation coefficient and observers’ annotation of 

reference EDA. 
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We then used a high-resolution time frequency decomposition 

method called variable frequency complex demodulation 

(VFCDM) [21], which provides more dynamic features of the 

clean and corrupted EDA. VFCDM has been previously used 

for several biosignal applications and has been found to be 

effective in analyzing signal characteristics [22] and 

removing noise and artifacts [23], [24]. We decomposed the 

EDA data segments into 12 non-overlapping frequency bands 

using VFCDM. Finally, we reconstructed two signals using 

the first 3 modes of VFCDM for the first signal, and the rest 

of the modes for the second signal. We computed the mean, 

variance, ratio of the variances, and ranges (max-min) of these 

two signals using VFCDM. Note that modes (1-3) include 

most of the dynamic characteristics of the EDA. Therefore, 

these features may reflect the signal and noise strength in the 

EDA segment. 

 

As in [19], we also used the discrete wavelet transform and 

computed several other features from the details and 

approximation coefficients. We used three-level wavelet 

decomposition using the Haar wavelet. By doing so, we may 

have included some redundant features. However, we were 

not concerned about including too many features because we 

used a feature selection algorithm to reduce the risk of 

overfitting, as described in the subsequent section. All 

features computed are shown in Table II. 

 

TABLE II.  SUMMARY OF THE FEATURES COMPUTED 

Index Category Specific features 

1-3 AR(2) Modelling  AR parameters, AR noise 

variance 

4-9 Raw EDA Mean, median, variance, Shannon 
entropy, range, and skewness 

10-19 First and second 

derivative of EDA 

Mean, variance, max, and min of 

the absolute value 

20-43 Wavelet 

decomposition 

Mean, median, variance, Shannon 

entropy, range, and number above 

zero of the wavelet coefficients 

44-52 VFCDM 
decomposition 

Mean, variance, range of the two 
intermediate reconstructed 

signals, and ratio of the variances. 

   

D. Feature Selection and classification: 

 We used the random forests (RF) machine learning 

algorithm for feature selection [25]. RF is a popular feature 

selection algorithm because of its good predictive 

performance, low overfitting, and interpretability. Feature 

selection using RF is in the embedded methods category 

which is a fusion of filter and wrapper methods. The 

embedded methods are highly accurate, easily generalizable, 

and interpretable in terms of feature selection. 

 

 To perform feature and model selection we followed a 

subject-independent validation strategy. We performed a 

leave one subject out (LOSO) validation strategy, meaning in 

every fold we left one subject out for testing and used the rest 

for training. We tested several classifiers such as random 

forests (RF), support vector machine (SVM) with linear and 

radial basis function (RBF) kernels, and K nearest neighbor 

(KNN). Among those tested, RF and SVM with RBF kernel 

showed the best performance. We obtained almost similar 

results using both RF and SVM with RBF kernel, hence, we 

present the results for only these two classifiers. For feature 

selection we used a group k-fold validation using the training 

data at each fold of LOSO validation. Again, we used a group 

k-fold to ensure the classifiers were subject-independent. To 

select the optimal parameter for each fold, we performed a 

grid-search cross-validation technique with the group k-fold. 

The parameters C and gamma for SVM were selected from 

parameter candidates of 1, 10, 100, and 1000, and 0.001, 0.01, 

0.1, 1, respectively. 

III. RESULTS 

A.  Classification results 

Table III shows the classification results using both RF and 
SVM. We compared the classification performance with a 
previously published motion artifact detection algorithm, 
which showed promising results [20].  

TABLE III.  CLASSIFICATION RESULTS AND COMPARISON 

Methods Mean accuracy Standard deviation 

Ian et al. [20] 75.05% 9.73% 

This work (RF) 83.40% 4.06% 

This work (SVM) 83.85% 4.91% 

  As shown in Table III, SVM provided the highest detection 
accuracy. The performance of [20] is lower compared to SVM. 
The performance of RF and SVM was similar; SVM had 
slightly higher accuracy (83.85%) albeit at the expense of 
higher standard deviation. While RF and SVM have standard 
deviation less than 5% (4.06% and 4.91%, respectively), [20] 
showed a standard deviation of 9.73%. This suggests that the 
machine learning methods used in this work are more 
consistent for motion artifact detection. 

B.  Feature Analysis 

We have tracked the features selected by RF at each fold and 

the most consistent features that were selected are presented 

in Table IV. As mentioned earlier, at every fold we performed 

a group five-fold validation on the training data to select the 

best feature combinations. For the RF classifier, the features 

selected did not change the classification accuracy 

significantly, however, for SVM the accuracy increased by 

around 3.2% (SVM accuracy was 80.65% before feature 

selection). Finally, we have statistically analyzed some of the 

features selected by the RF feature selection. We performed a 

pairwise t-test for the feature values of the two classes and 

found statistically significant difference in most of the 

selected features.  

TABLE IV.  FEATURES SELECTED CONSISTENTLY 

Category Features selected 

AR modeling Noise variance, AR parameters 

(𝑎1 𝑎𝑛𝑑 𝑎2) 

Raw EDA  Mean, range 

1st derivative: max 
2nd derivative: range 
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VFCDM Variance in first three modes and 
rest of the modes (4-12) 

Wavelet Mean of approximations 

Variances of details coefficients 

 

Fig. 2 shows box plots of the distribution of four of the 
consistent features’ distributions for the clean and noisy EDA. 
As shown in Fig. 2, there is a clear visual difference between 
the mean values of the features of two classes. As expected, 
the AR model had higher residual noise for the noisy EDA; the 
AR parameters also reflect this observation. The same is noted 
for the variance of cd1 (detail coefficients 1). The t-test also 
provided statistically significant differences (p < 0.01). 

IV. CONCLUSIONS 

We presented preliminary results of an automated motion 

artifact detection algorithm for EDA signals. We created an 

EDA database with simultaneous reference and target EDA 

channels and proposed a correlation-based criterion to define 

clean and noisy EDA segments without human annotations 

which could be biased and may differ from person to person. 

We have proposed several statistical, model-based and time-

frequency features and applied a subject-independent 

machine learning algorithm for automated motion artifact 

detection in EDA signals. We also selected the consistent 

features using RF for subsgequent classification analysis. The 

performance of the machine learning-based motion artifact 

detector is compared with a recently published promising 

method. It was observed that our approach performed better 

and with more consistency. While the proposed method 

showed promising performance, more data and further 

rigorous analysis is needed in the future to confirm the results.  
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Figure 2.  Selected feature statistics for clean and noisy EDA. 
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