
  

 

Abstract— Alzheimer's disease (AD) is a typical 
neurodegenerative disease that is associated with cognitive 
decline, memory loss, and functional disconnection. Diffusion 
tensor imaging (DTI) has been widely used to investigate the 
integrity and degeneration of white matter in AD. In this study, 
with one of the world’s largest DTI biobanks (865 individuals), 
we aim to explore the diagnosis utility and stability of tract-
based features (extracted by automated fiber quantification 
(AFQ) pipeline) in AD. First, we studied the clinical association 
of tract-based features by detecting AD-associated alterations of 
diffusion properties along fiber bundles. Then, a binary 
classification experiment between AD and normal controls was 
performed using tract-based diffusion properties as features and 
support vector machine (SVM) as a classifier with an 
independent site cross-validation strategy. The average accuracy 
of 77.90% (the highest was 88.89%) showed that white matter 
properties as biomarkers had a relatively stable role in the 
clinical diagnosis of AD. 

 
Clinical Relevance— White matter characteristics are valid 

and robust biomarkers of AD, which have high accuracy and 
generalizability in the AD diagnosis in a large multi-site dataset. 

I. INTRODUCTION 

Alzheimer's disease (AD) is a chronic, progressive 
neurodegenerative disease associated with cognitive decline, 
which brings a huge burden to both family and society [1, 2]. 
Numerous studies have concluded that effective disease 
control benefits from early diagnosis and intervention, which 
gives a research priority to the biomarker searching for early 
diagnosis of AD [3, 4]. 

Several studies have shown that white matter (WM) 
impairment is a part of the pathological cascade in AD [5, 6]. 
Diffusion tensor imaging (DTI) can provide quantitative 
measurement of WM fiber trend and damage degree, 
providing valuable information for WM lesions. Among DTI 
analysis methods, automated fiber quantification (AFQ) has 
shown certain advantages in processing large-scale data 
efficiently and detecting detailed information based on the 
points along fiber bundles automatically [7, 8]. Thus AFQ has 
been used to study the tracts alterations in several neurogenic 
diseases including AD [9-12]. 
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Dou and colleagues had introduced the AFQ method to 
study the WM alterations in AD and explored the potential 
possibility of using WM indices to classify AD from normal 
controls (NC) [12]. But this study was based on a small data 
set thus lacked persuasiveness. For searching imaging 
biomarkers with potentiality in the clinical application of AD, 
it is of great significance to use cross-validation based on 
large-scale multi-site databases to improve the generalizability 
of the algorithmic models. Hereby, the current study aims to 
use a large-scale multisite dataset to investigate the clinical 
validity and stability of the tract abnormal patterns using a 
consistent analysis pipeline, as well as to study the diagnosis 
ability and generalizability of WM features in classifying AD 
from NC among different sites. 

For this purpose, in the current study, based on a multi-site 
dataset with a total of 865 subjects (321 ADs, 265 mild 
cognitive impairment (MCI) subjects, 279 NCs), firstly, we 
tested the clinical association of the tract-based features 
extracted via AFQ through a meta-analysis, which was to 
detect pointwise differences between AD and NC groups of 
diffusion parameters (fractional anisotropy (FA), radial 
diffusivity (RD), mean diffusivity (MD), and axial diffusivity 
(AxD)), followed by correlation analysis between these 
parameters and the score of cognitive status (mini-mental state 
examination (MMSE)) in the MCI plus AD groups. Secondly, 
ADs and NCs were binary classified using tract-based 
properties as features and support vector machine (SVM) as a 
classifier with independent site cross-validation to estimate the 
diagnosis utility and generalizability of tract-based features in 
AD. 

II. METHODS 

A. Participants and Image Acquisition Protocol 
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4 hospitals in China. The acquisition parameters of DTI 
images were listed in Table Ⅰ [13]. 
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TABLE I.  DTI ACQUISITION PARAMETERS 

B. Image Preprocessing and WM Features Extraction 

Images of all datasets were processed by the following 
procedures. Firstly, DICOM files were transformed to the Nifti 
images. Then, the DWI images were processed for routine 
dtiInit preprocessing pipeline in the VISTASOFT package 
(version 1.0, https://github.com/vistalab/vistasoft) containing 
eddy current correction, head motion correction, skull 
stripping, and tensor model fitting. Secondly, the AFQ 
pipeline (version 1.2, https://github.com/yeatmanlab/AFQ) [7] 
was used to quantify diffusion parameters (FA, RD, MD, AxD) 
and morphometric characteristics (fiber core linearity values, 
curvature, torsion, volume) at 100 points along the 18 major 
white matter tracts,  the names of these tracts including 
bilateral inferior fronto-occipital fasciculus (IFOF), 
corticospinal, inferior longitudinal fasciculus (ILF), arcuate, 
superior longitudinal fasciculus (SLF), cingulum cingulate, 
thalamic radiation, uncinate fasciculus, minor and major 
callosum forceps. 

Due to complex factors such as data quality, there is no 
guarantee of the recognition of all 18 fiber bundles for each 
subject using AFQ. Thus, during the quality control step, 
subjects with no more than 14 fiber bundles identified were 
excluded from the subsequent analysis. Consequently, 825 
subjects  (276 NCs, 255 MCIs, 294 ADs) were included for 
further analysis (Table Ⅱ). In addition, curvature and torsion 
were excluded from subsequent analysis due to excessive 
missing values. 

 

TABLE II.  DEMOGRAPHICS AND PSYCHOLOGICAL STATISTICS OF THE 

INCLUDED SUBJECTS 

C. Group-level Pointwise Meta-analysis 

The clinical association of tract-based features was 
investigated by detecting reliable differences of these features 
between the AD and NC groups and the relationship with 
cognitive states. First, we performed a pointwise analysis of 
the diffusion metrics along 100 points of each fiber tract at a 
group level (AD and NC). After controlling age and gender 
effects, a random-effects meta-analysis (R, meta-package, 
version 4.9-7) was used to combine effect sizes (Cohen’s d) of 
7 cohorts for each diffusion property and each point along the 
right and left tracts separately. Points with P<0.01 (FDR 
corrected) and fiber tracts with at least 10 continuous and 
uninterrupted significant points were considered statistically 
significant between AD and NC groups. 

Then, we calculated the Pearson’s correlation coefficients 
to investigate the relationship between cognitive ability scores 
(MMSE) and diffusion parameters that were averaged over the 
intervals with significant differences (results of meta-analysis) 
at each major tract in the MCI plus AD groups (P<0.005, 
uncorrected). 

D. Classification 

After verifying the clinical validity of tract-based features 
through meta-analysis and correlation analysis, we performed 
classification experiments to evaluate the discriminant and 
generalization performance of tract-based features in AD 
diagnosis. We used tract-based properties extracted via AFQ 
as features and SVM with radial basis function (RBF) kernel 
(python 3.7, Scikit-learn package 0.21.2) as a classifier to 
achieve a binary classification task (276 NCs and 294 ADs). 

Specifically, we first reduced the feature dimension from 
10802 (18fibers×100points×6metrics (FA, MD, RD, AxD, 
fiber core linearity values and volume) + age and gender = 
10802) to 1082 by applying a 10-point-average smooth 
strategy to tract-based features. Then, for the outer loop, we 
adopted a leave-one-site-out cross-validation strategy which 
means that one site data was selected as the testing set for each 
loop, data from the rest of the sites were the training set. Within 
the inner-loop, we used the training set to search optimal 
model parameters for SVM (penalty parameter C of the error 
term and RBF kernel coefficient γ) using grid search method 
with 3-fold cross-validation (the default fold number in Scikit-
learn package 0.21.2) (Fig. 2A) [14]. Lastly, Accuracy (ACC), 
sensitivity (SEN), and specificity (SPE) as well as the area 
under the receiver operating characteristic curve (AUC) were 
used to evaluate model performance. Besides, Pearson’s 
correlation between the classifier output (decision function 
score) and MMSE was calculated to find the clinical relevance 
of classification. In particular, the absolute value of the 
decision function score represents the credibility of prediction 
and the greater absolute value means higher credibility. The 
sign of the decision function score represents the predicted 
class (plus sign represents AD and minus sign represents NC). 

In addition, considering the heterogeneity of DTI data 
from different sites, we harmonized the tract-based features 
with the Combat method (combat tool, sva package, version 
3.34.0 in R) [15] and then performed the classification task in 
the same way as a supplementary experiment. We also used 
XGBoost and linear kernel SVM as classifiers to repeat the 
experiment to study the feature importance scores. 

 

 
Note: Gender comparisons between groups were tested through Chi-squared 
tests. One-way ANOVA was performed for age and MMSE comparisons.  
***p<0.001, **P<0.01, *P<0.05. 
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III. RESULTS 

A.  Meta-analysis of Pointwise Differences along Tracts 
Showed the Clinical Validity of the Tract-based Features 

Meta-analysis results showed that differences between AD 
and NC groups widely existed in tract-based features, and the 
diffusion properties of the discrepant loci were significantly 
correlated with cognitive status, thus demonstrating the 
clinical validity of the features (Fig. 1). 

 

Figure 1.  Significant variance in FA on left cingulum cingulate and 
callosum forceps minor between NC and AD. FA values along fibers and 

the correlation between the FA of the intervals with significant differences 
and MMSE were laid out. Forest plots showed the meta-analysis of the 

average FA values of significant locations along the fiber tract in AD and 
NC comparison. (**P<0.001) 

From the meta-analysis, compared with NC, the AD group 
presented widely lower FA (10 tracts), fiber core linearity (12 
tracts) and volume (8 tracts), and higher MD (18 tracts), RD 
(16 tracts) and AxD (14 tracts). The alteration patterns were 
similar but MD and RD were more sensitive to identify the 
alterations than other metrics. Bilateral cingulum, IFOF, 
uncinate fasciculus, and callosum forceps showed significant 
differences. The two fiber bundles that not only had a 
significant difference on all indicators but also had the largest 
effect size in FA were left cingulum cingulate (the largest 
Cohen’s d in FA=-0.86, P=1.3e-07, shown as Fig 1 left) and 
callosum forceps minor (the second-largest Cohen’s d in FA = 
-0.79, P=1.6e-08, shown as Fig. 1 right). However, in the left 
corticospinal, FA was significantly higher in AD group with a 
relatively lower effect size (Cohen’s d=0.57, P=6.7e-06). 

Correlation coefficients between the mean feature values 
of the locations with significant differences along significant 
tracts and MMSE showed commonly strong relevance (the 
absolute value of r ranging from 0.12 to 0.31). The strongest 
correlation averaged of all indicators was found on the 
callosum forceps minor (mean absolute r=0.25, r in FA=0.24, 
P<1e-04). The left cingulum cingulate also shown a strong 
correlation in FA (r=0.25, P<1e-04). 

B.  Classification Results 

Based on the feature validity, the classification results 
demonstrated that the tract-based features had stable and 
generalizable classification performance. 

When using original fiber features, the leave-one-site-out 
verification showed that the average ACC of 7 sites was 
77.90%, 3 sites had ACC over 80%, the highest was 88.89% 
(S06), only one site had an ACC of under 70% (S02, 66.07%), 
and the average AUC was 0.86 (Table Ⅲ), indicating validity 
and stability of tract-based characteristics in AD diagnosis. 
But the performances varied across sites, which may be caused 
by the different data distributions across sites (Fig. 2C). 

TABLE III.  CLASSIFICATION PERFORMANCE 

 
Correlation analysis showed that the decision function 

score in the AD group was negatively associated with MMSE 
(r=-0.32, P<1e-04, Fig. 2B). While as for the MCI group, the 
correlation coefficient was only -0.18 (P=0.005), manifesting 
that the classification output could represent the severity of 
cognitive impairment in the AD group but the predictive 
performance was limited in the MCI group. 

Considering the site heterogeneity, we used the 
harmonized tract-based features processed via Combat to do 
the same experiment. Generally, data distribution differences 
between sites were reduced a lot (Fig. 2C). As Fig. 2D shown, 
the accuracies of sites with poor performance based on original 
data were greatly improved (S02, S03, S07) and the average 
performance was enhanced from ACC of 77.90% to 79.78% 
(AUC of 0.86 to 0.89). Besides, the performances of all sites 
were more balanced. The correlation between decision 
function and MMSE in AD group remained stable (r=-0.33). 

 

Figure 2.  Classification performance. (A) leave-one-site-out verification 
strategy. (B-left) ROC curves of all sites in cross-validation with original 

features. (B-right) Correlations between classifier output (decision function 
with original features) and MMSE scores in the AD group. (C) The 

distribution of original data (left) and harmonized data (right) were shown. 
T-SNE (python, manifold-package) was used to visualize the latent space 
embedded by features. (D) Classification (SVM) performance comparison 

(ACC and AUC) between original feature and harmonized feature were 
shown. 
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Classification using XGBoost and linear kernel SVM 
showed similar performance (XGBoost: average AUC of 
original features = 0.85, average AUC of harmonized features 
= 0.87. linear SVM: average AUC of original features = 0.85, 
average AUC of harmonized features = 0.85). The tracts with 
higher average feature importance scores were left 
corticospinal, bilateral cingulum, callosum forceps, and 
uncinate fasciculus, enhancing the findings from the meta-
analysis. We have also tried tri-classifications, but the results 
are limited with the best accuracy of only 55.20%. More 
detailed results can be found in [13]. 

IV. DISCUSSION 

Our study demonstrated the stability and generalizability 
of tract-based features extracted by AFQ in AD diagnosis, 
confirming the clinical utility of white matter parameters as 
biomarkers for AD. The advantage of our study is that, based 
on a large-scale multi-site dataset, the extensive lesions of WM 
fibers in AD were verified by meta-analysis, and the 
generalizability and stability of WM features in diagnosis were 
quantificationally measured by independent site cross-
validation strategy, which made our results more credible and 
convincing. 

From the perspective of the clinical significance of tract-
based features, in line with previous studies [11, 12], WM 
alterations appeared widely in AD. And most of the changes 
were significantly correlated with the cognitive status in AD 
plus MCI groups, demonstrating a strong clinical basis of our 
findings. Among all the fiber tracts, the cingulum cingulate 
and callosum forceps have been confirmed to be most strongly 
associated with structural degeneration and impaired cognitive 
function in AD. Particularly, cingulum cingulate were found 
to be compromised in the early stage of AD [16]. The corpus 
callosum connects the two brain hemispheres and plays key 
roles in high-level associative connectivity [17, 18]. Hereby, 
meta-analysis enhanced the reliability of our results. Besides, 
the results of the meta-analysis are similar to the feature 
importance from classifiers, which can mutually verify. 

Mining effective biomarkers play a vital role in the 
individualized treatment of AD. One of the great advantages 
of the present study is that the classifiers achieved high ACC 
with the leave-site-out independent cross-validation. This 
cross-validation strategy can not only reduce overfitting but 
also effectively quantify the generalizability of features and 
models across sites [14, 19]. According to the classification 
results, although the average performance was mediocre 
(ACC=77.90%), the accuracies of the top three were higher 
than 80%, illustrating that tract-based features were effective 
in AD diagnosis. 

Amid the trend to use large-scale multisite datasets to boost 
statistical power, heterogeneity between sites is an inevitable 
problem for the reason of diverse acquisition conditions and 
processing pipelines (as shown in Fig. 2C). According to the 
classification results, the ACC of different sites was not 
balanced (the top was higher than 80% but the lowest was 
under 70%). The reasons for the site-dependent accuracies are 
complex. On the one hand, the accuracy of diagnosis (i.e., the 
real labels in classification) is one reason. Sites with accurate 
labels (e.g., S01, S06 collected by specialists), have higher 
classification accuracies. Improving the precision of labels is 

of great significance in building computer-aided diagnostic 
models. On the other hand, heterogeneity caused by the 
manufacturer may be one reason. The worst categorized site 
(S02) was the only one of the seven sites to use GE machines, 
and its data distribution deviated significantly from the other 
sites (Fig. 2C left), indicating that using data collected by 
different manufacturers requires more care. Among 
harmonization methods, ComBat has been confirmed to be an 
outstanding tool to reduce site heterogeneity meanwhile 
remain the biological information [15, 20]. In the classification 
experiment, the average ACC and AUC have been slightly 
improved and the accuracy of the site with poor performance 
has been enhanced after using ComBat, indicating the 
advantage of harmonization in classification. However, the 
disadvantage of ComBat is that it cannot deal with data from 
new sites which are very common in real applications [15]. In 
addition, the stability of performance improvement of the 
harmonization method among different algorithms remains to 
be further evaluated. Thus, how to combine the data from 
different sites and develop a computer-aided diagnostic model 
without site usage restriction is still a big challenge. 

V. CONCLUSION 

In conclusion, for the first time, we systematically assessed 
the validity and robustness of aberrant patterns of white 
matter dysconnectivity in AD using one of the largest DTI 
biobanks under a strict and unified analysis pipeline. The 
generalizability of tract-based features in the AD diagnosis 
was cross-validated with high prediction accuracies, proving 
the clinical practicality of white matter characteristics as 
biomarkers of AD. 
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